57 research outputs found

    Novel method to rescue a lethal phenotype through integration of target gene onto the X-chromosome.

    Get PDF
    The loss-of-function mutations of serine protease inhibitor, Kazal type 1 (SPINK1) gene are associated with human chronic pancreatitis, but the underlying mechanisms remain unknown. We previously reported that mice lacking Spink3, the murine homologue of human SPINK1, die perinatally due to massive pancreatic acinar cell death, precluding investigation of the effects of SPINK1 deficiency. To circumvent perinatal lethality, we have developed a novel method to integrate human SPINK1 gene on the X chromosome using Cre-loxP technology and thus generated transgenic mice termed "X-SPINK1". Consistent with the fact that one of the two X chromosomes is randomly inactivated, X-SPINK1 mice exhibit mosaic pattern of SPINK1 expression. Crossing of X-SPINK1 mice with Spink3+/- mice rescued perinatal lethality, but the resulting Spink3-/-;XXSPINK1 mice developed spontaneous pancreatitis characterized by chronic inflammation and fibrosis. The results show that mice lacking a gene essential for cell survival can be rescued by expressing this gene on the X chromosome. The Spink3-/-;XXSPINK1 mice, in which this method has been applied to partially restore SPINK1 function, present a novel genetic model of chronic pancreatitis

    New insights into the pathways initiating and driving pancreatitis.

    No full text
    Purpose of reviewIn this article, we discuss recent studies that advance our understanding of molecular and cellular factors initiating and driving pancreatitis, with the emphasis on the role of acinar cell organelle disorders.Recent findingsThe central physiologic function of the pancreatic acinar cell - to synthesize, store, and secrete digestive enzymes - critically relies on coordinated actions of the endoplasmic reticulum (ER), the endolysosomal system, mitochondria, and autophagy. Recent studies begin to unravel the roles of these organelles' disordering in the mechanism of pancreatitis. Mice deficient in key autophagy mediators Atg5 or Atg7, or lysosome-associated membrane protein-2, exhibit dysregulation of multiple signaling and metabolic pathways in pancreatic acinar cells and develop spontaneous pancreatitis. Mitochondrial dysfunction caused by sustained opening of the permeability transition pore is shown to mediate pancreatitis in several clinically relevant experimental models, and its inhibition by pharmacologic or genetic means greatly reduces local and systemic pathologic responses. Experimental pancreatitis is also alleviated with inhibitors of ORAI1, a key component of the plasma membrane channel mediating pathologic rise in acinar cell cytosolic Ca2+. Pancreatitis-promoting mutations are increasingly associated with the ER stress. These findings suggest novel pathways and drug targets for pancreatitis treatment. In addition, the recent studies identify new mediators (e.g., neutrophil extracellular traps) of the inflammatory and other responses of pancreatitis.SummaryThe recent findings illuminate a critical role of organelles regulating the autophagic, endolysosomal, mitochondrial, and ER pathways in maintaining pancreatic acinar cell homeostasis and secretory function; provide compelling evidence that organelle disordering is a key pathogenic mechanism initiating and driving pancreatitis; and identify molecular and cellular factors that could be targeted to restore organellar functions and thus alleviate or treat pancreatitis

    Autophagy, Inflammation, and Immune Dysfunction in the Pathogenesis of Pancreatitis

    No full text
    Pancreatitis is a common disorder with significant morbidity and mortality, yet little is known about its pathogenesis, and there is no specific or effective treatment. Its development involves dysregulated autophagy and unresolved inflammation, demonstrated by studies in genetic and experimental mouse models. Disease severity depends on whether the inflammatory response resolves or amplifies, leading to multi-organ failure. Dysregulated autophagy might promote the inflammatory response in the pancreas. We discuss the roles of autophagy and inflammation in pancreatitis, mechanisms of deregulation, and connections among disordered pathways. We identify gaps in our knowledge and delineate perspective directions for research. Elucidation of pathogenic mechanisms could lead to new targets for treating or reducing the severity of pancreatitis
    corecore