33 research outputs found

    Shorter versus longer corticosteroid duration and recurrent immune checkpoint inhibitor-associated AKI

    Get PDF
    ImmunotherapyInmunoterapiaImmunoteràpiaBackground Corticosteroids are the mainstay of treatment for immune checkpoint inhibitor-associated acute kidney injury (ICPi-AKI), but the optimal duration of therapy has not been established. Prolonged use of corticosteroids can cause numerous adverse effects and may decrease progression-free survival among patients treated with ICPis. We sought to determine whether a shorter duration of corticosteroids was equally efficacious and safe as compared with a longer duration. Methods We used data from an international multicenter cohort study of patients diagnosed with ICPi-AKI from 29 centers across nine countries. We examined whether a shorter duration of corticosteroids (28 days or less) was associated with a higher rate of recurrent ICPi-AKI or death within 30 days following completion of corticosteroid treatment as compared with a longer duration (29–84 days). Results Of 165 patients treated with corticosteroids, 56 (34%) received a shorter duration of treatment and 109 (66%) received a longer duration. Patients in the shorter versus longer duration groups were similar with respect to baseline and ICPi-AKI characteristics. Five of 56 patients (8.9%) in the shorter duration group and 12 of 109 (11%) in the longer duration group developed recurrent ICPi-AKI or died (p=0.90). Nadir serum creatinine in the first 14, 28, and 90 days following completion of corticosteroid treatment was similar between groups (p=0.40, p=0.56, and p=0.89, respectively). Conclusion A shorter duration of corticosteroids (28 days or less) may be safe for patients with ICPi-AKI. However, the findings may be susceptible to unmeasured confounding and further research from randomized clinical trials is needed

    The occurrence of hyponatremia and its importance as a prognostic factor in a cross-section of cancer patients

    Get PDF
    BACKGROUND: Hyponatremia is prognostic of higher mortality in some cancers but has not been well studied in others. We used a longitudinal design to determine the incidence and prognostic importance of euvolemic and hypervolemic hyponatremia in patients following diagnosis with lymphoma, breast (BC), colorectal (CRC), small cell lung (SCLC), or non-small cell lung cancer (NSCLC). METHODS: Medical record and tumor registry data from two large integrated delivery networks were combined for patients diagnosed with lymphoma, BC, CRC, or lung cancers (2002-2010) who had ≥1 administration of radiation/chemotherapy within 6 months of diagnosis and no evidence of hypovolemic hyponatremia. Hyponatremia incidence was measured per 1000 person-years (PY). Cox proportional hazard models assessed the prognostic value of hyponatremia as a time-varying covariate on overall survival (OS) and progression-free survival (PFS). RESULTS: Hyponatremia incidence (%, rate) was 76 % each, 1193 and 2311 per 1000 PY, among NSCLC and SCLC patients, respectively; 37 %, 169 in BC; 64 %, 637 in CRC, and 60 %, 395 in lymphoma. Hyponatremia was negatively associated with OS in BC (HR 3.7; P = \u3c.01), CRC (HR 2.4; P \u3c .01), lung cancer (HR 2.4; P \u3c .01), and lymphoma (HR 4.5; P \u3c .01). Hyponatremia was marginally associated with shorter PFS (HR 1.3, P = .07) across cancer types. CONCLUSIONS: The incidence of hyponatremia is higher than previously reported in lung cancer, is high in lymphoma, BC, and CRC and is a negative prognostic indicator for survival. Hyponatremia incidence in malignancy may be underestimated. The effects of hyponatremia correction on survival in cancer patients require further study

    Multinational Association of Supportive Care in Cancer (MASCC) 2020 clinical practice recommendations for the management of severe dermatological toxicities from checkpoint inhibitors

    Get PDF
    Immune checkpoint inhibitors (ICIs) frequently result in cutaneous immune-related adverse events (IrAEs). Although the majority of these events are mild-to-moderate in severity, up to 5% are severe, which may lead to morbidity and dose interruption or discontinuation of ICI therapy. In addition, up to 25% of dermatologic IrAEs are corticosteroid-refractory or corticosteroid-dependent. These 2020 MASCC recommendations cover the diagnosis and management of cutaneous IrAEs with a focus on moderate-to-severe and corticosteroid-resistant events. Although the usage of immune-suppressive therapy has been advocated in this setting, there is a lack of randomized clinical trial data to provide a compelling level of evidence of its therapeutic benefit.NIH/NIAMS; the NIH/NCI Cancer Center; the Cancer Association of South Africa (CANSA) and the National Research Foundation (NRF) of South Africa.http://link.springer.com/journal/5202021-08-20hj2020Immunolog

    Multinational Association of Supportive Care in Cancer (MASCC) 2020 clinical practice recommendations for the management of immune-mediated cardiovascular, rheumatic, and renal toxicities from checkpoint inhibitors

    Get PDF
    Immune checkpoint inhibitors (ICIs) have emerged as the newest pillar of cancer treatment. Immune-mediated toxicities, stemming from increased activity within the T cell lineage, range from asymptomatic or mild complications to those that are fulminant and potentially fatal. Although they are of variable occurrence, cardiovascular, rheumatic, and renal immune-mediated toxicities are among the most serious of these adverse events. We present MASCC recommendations with respect to the workup and management of cardiovascular, rheumatic, and renal immune-mediated toxicities with a focus on presentations that require treatment with immunomodulating agents.The Cancer Association of South Africa (CANSA), the National Research Foundation (NRF) of South Africa and the NIH/NCI (Cancer Center Support Grant P30 CA008748).http://link.springer.com/journal/5202021-08-20hj2020Immunolog

    Multinational Association of Supportive Care in Cancer (MASCC) 2020 clinical practice recommendations for the management of immune checkpoint inhibitor endocrinopathies and the role of advanced practice providers in the management of immune-mediated toxicities

    Get PDF
    Immune checkpoint inhibitors (ICIs) have emerged as the newest pillar of cancer treatment, transforming outcomes in melanoma and showing benefit in a range of malignancies. Immune-mediated toxicities, stemming from increased activity within the T cell lineage, range from asymptomatic or mild complications to those that are fulminant and potentially fatal. Immune-mediated endocrinopathies include hypophysitis, thyroiditis, and insulin-dependent diabetes mellitus. These presentations, which may be vague and non-specific, can be life-threatening if not diagnosed and treated appropriately. This review considers the work-up and management of immune-mediated endocrinopathies and also considers the role of advanced practice practitioners in the management of immune-mediated toxicities. These state-of-the-art MASCC recommendations represent a comprehensive overview of the management and clinical work-up in those in whom the diagnosis should be considered.The Cancer Association of South Africa (CANSA), the National Research Foundation (NRF) of South Africa and the NIH/NCI (Cancer Center Support Grant P30 CA008748).http://link.springer.com/journal/5202021-08-20hj2020Immunolog

    Acute kidney injury in patients treated with immune checkpoint inhibitors

    Get PDF
    Background: Immune checkpoint inhibitor-associated acute kidney injury (ICPi-AKI) has emerged as an important toxicity among patients with cancer. Methods: We collected data on 429 patients with ICPi-AKI and 429 control patients who received ICPis contemporaneously but who did not develop ICPi-AKI from 30 sites in 10 countries. Multivariable logistic regression was used to identify predictors of ICPi-AKI and its recovery. A multivariable Cox model was used to estimate the effect of ICPi rechallenge versus no rechallenge on survival following ICPi-AKI. Results: ICPi-AKI occurred at a median of 16 weeks (IQR 8-32) following ICPi initiation. Lower baseline estimated glomerular filtration rate, proton pump inhibitor (PPI) use, and extrarenal immune-related adverse events (irAEs) were each associated with a higher risk of ICPi-AKI. Acute tubulointerstitial nephritis was the most common lesion on kidney biopsy (125/151 biopsied patients [82.7%]). Renal recovery occurred in 276 patients (64.3%) at a median of 7 weeks (IQR 3-10) following ICPi-AKI. Treatment with corticosteroids within 14 days following ICPi-AKI diagnosis was associated with higher odds of renal recovery (adjusted OR 2.64; 95% CI 1.58 to 4.41). Among patients treated with corticosteroids, early initiation of corticosteroids (within 3 days of ICPi-AKI) was associated with a higher odds of renal recovery compared with later initiation (more than 3 days following ICPi-AKI) (adjusted OR 2.09; 95% CI 1.16 to 3.79). Of 121 patients rechallenged, 20 (16.5%) developed recurrent ICPi-AKI. There was no difference in survival among patients rechallenged versus those not rechallenged following ICPi-AKI. Conclusions: Patients who developed ICPi-AKI were more likely to have impaired renal function at baseline, use a PPI, and have extrarenal irAEs. Two-thirds of patients had renal recovery following ICPi-AKI. Treatment with corticosteroids was associated with improved renal recovery

    Kidney injury and disease in patients with haematological malignancies.

    No full text
    Acute kidney injury (AKI) is common in patients with cancer, especially in those with haematological malignancies. Kidney injury might be a direct consequence of the underlying haematological condition. For example, in the case of lymphoma infiltration or extramedullary haematopoiesis, it might be caused by a tumour product; in the case of cast nephropathy it might be due to the presence of monoclonal immunoglobulin; or it might result from tumour complications, such as hypercalcaemia. Kidney injury might also be caused by cancer treatment, as many chemotherapeutic agents are nephrotoxic. High-intensity treatments, such as high-dose chemotherapy followed by haematopoietic stem cell transplantation, not only increase the risk of infection but can also cause AKI through various mechanisms, including viral nephropathies, engraftment syndrome and sinusoidal obstruction syndrome. Some conditions, such as thrombotic microangiopathy, might also result directly from the haematological condition or the treatment. Novel immunotherapies, such as immune checkpoint inhibitors and chimeric antigen receptor T cell therapy, can also be nephrotoxic. As new therapies for haematological malignancies with increased anti-tumour efficacy and reduced toxicity are developed, the number of patients receiving these treatments will increase. Clinicians must gain a good understanding of the different mechanisms of kidney injury associated with cancer to better care for these patients
    corecore