2 research outputs found

    Using synchrotron-based X-Ray microtomography and functional contrast agents in environmental applications

    Get PDF
    Despite very rapid development in commercial X-ray tomography technology, synchrotron-based tomography facilities still have a number of advantages over conventional systems. The high photon flux inherent of synchrotron radiation sources allows for (i) high resolution to micro- or nanometer scales depending on the individual beamline, (ii) rapid acquisition times that allow for collection of sufficient data for statistically significant results in a short amount of time as well as prevention of temporal changes that would take place during longer scan times, and (iii) optimal implementation of contrast agents that allow us to resolve features that would not be decipherable in scans obtained with a polychromatic radiation source. This chapter highlights recent advances in capabilities at synchrotron sources, as well as implementation of synchrotron-based computed microtomography (CMT) to two topics of interest to researchers in the soil science, hydrology, and environmental engineering fields, namely multiphase flow in porous media and characterization of biofilm architecture in porous media. In both examples, we make use of contrast agents and photoelectric edge-specic scanning (single- or dual-energy type), in combination with advanced image processing techniques
    corecore