35 research outputs found

    Association between visit-to-visit Lipid variability and incident cancer: A population-based cohort study

    Get PDF
    Dyslipidemia is associated with increased cancer risk. However, the prognostic value of visit-to-visit lipid variability (VVLV) is unexplored in this regard. To investigate the associations between the VVLV and the risk of incident cancer, we conducted a retrospective cohort study on adult patients attending a family medicine clinic in Hong Kong during 2000-2003, excluding those with <3 tests for low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides, and total cholesterol (TC) each, those with prior cancer diagnosis, and those with <1 year of follow-up. Visit-to-visit LDL-C, HDL-C, TC, and triglycerides variabilities were measured by the coefficient of variation (CV). Patients were followed up until 31st December 2019 for the primary outcome of incident cancer. Altogether, 69,186 patients were included (26,679 males (38.6%); mean age 60 ± 13 years; mean follow-up 16 ± 3 years); 7958 patients (11.5%) had incident cancer. Higher variability of LDL-C, HDL-C, TC, and TG was associated with higher risk of incident cancer. Patients in the third tercile of the CV of LDL-C (adjusted hazard ratio (aHR) against first tercile 1.06 [1.00, 1.12], P = 0.049), HDL-C (aHR 1.37 [1.29, 1.44], P< 0.001), TC (aHR 1.10 [1.04, 1.17], P = 0.001), and TG (aHR 1.11 [1.06, 1.18], P < 0.001) had the highest risks of incident cancer. Among these, only HDL-C variability remained associated with the risk of incident cancer in users of statins/fibrates. To conclude, higher VVLV was associated with significantly higher long-term risks of incident cancer. VVLV may be a clinically useful tool for cancer risk stratification

    MoS2 as a Co-Catalyst for Photocatalytic Hydrogen Production: A Mini Review

    No full text
    Molybdenum disulfide (MoS2), with a two-dimensional (2D) structure, has attracted huge research interest due to its unique electrical, optical, and physicochemical properties. MoS2 has been used as a co-catalyst for the synthesis of novel heterojunction composites with enhanced photocatalytic hydrogen production under solar light irradiation. In this review, we briefly highlight the atomic-scale structure of MoS2 nanosheets. The top-down and bottom-up synthetic methods of MoS2 nanosheets are described. Additionally, we discuss the formation of MoS2 heterostructures with titanium dioxide (TiO2), graphitic carbon nitride (g-C3N4), and other semiconductors and co-catalysts for enhanced photocatalytic hydrogen generation. This review addresses the challenges and future perspectives for enhancing solar hydrogen production performance in heterojunction materials using MoS2 as a co-catalyst

    Photocatalytic Degradation of Food and Juices Dyes via Photocatalytic Nanomaterials Synthesized through Green Synthetic Route: A Systematic Review

    No full text
    The unavailability of non-poisonous and hygienic food substances is the most challenging issue of the modern era. The uncontrolled usage of toxic colorant moieties in cosmetics and food manufacturing units leads to major threats to human life. The selection of environmentally benign approaches for the removal of these toxic dyes has gained the utmost attention from researchers in recent decades. This review article’s main aim is the focus on the application of green-synthesized nanoparticles (NPs) for the photocatalytic degradation of toxic food dyes. The use of synthetic dyes in the food industry is a growing concern due to their harmful effects on human health and the environment. In recent years, photocatalytic degradation has emerged as an effective and eco-friendly method for the removal of these dyes from wastewater. This review discusses the various types of green-synthesized NPs that have been used for photocatalytic degradation (without the production of any secondary pollutant), including metal and metal oxide NPs. It also highlights the synthesis methods, characterization techniques, and photocatalytic efficiency of these NPs. Furthermore, the review explores the mechanisms involved in the photocatalytic degradation of toxic food dyes using green-synthesized NPs. Different factors that responsible for the photodegradation, are also highlighted. Advantages and disadvantages, as well as economic cost, are also discussed briefly. This review will be advantageous for the readers because it covers all aspects of dyes photodegradation. The future feature and limitations are also part of this review article. Overall, this review provides valuable insights into the potential of green-synthesized NPs as a promising alternative for the removal of toxic food dyes from wastewater

    Symmetric Radial Basis Function Method for Simulation of Elliptic Partial Differential Equations

    No full text
    In this paper, the symmetric radial basis function method is utilized for the numerical solution of two- and three-dimensional elliptic PDEs. Numerical results are obtained by using a set of uniform or random points. Numerical tests are accomplished to demonstrate the efficacy and accuracy of the method on both regular and irregular domains. Furthermore, the proposed method is tested for the solution of elliptic PDE in the case of various frequencies

    Role of Temporal Zn Fertilization along with Zn Solubilizing Bacteria in Enhancing Zinc Content, Uptake, and Zinc Use Efficiency in Wheat Genotypes and Its Implications for Agronomic Biofortification

    No full text
    Wheat (Triticum aestivum L.) is a vital cereal crop for food security in Pakistan. In Zn-deficient soils, its productivity and quality suffer, affecting grain yield, Zn bioavailability, and nutrition, which can lead to malnutrition. Field experiments were conducted using factorial randomized block design at the Agricultural Research Institute (ARI) Tarnab, Peshawar, Pakistan to evaluate the impact of wheat genotypes (G1-TRB-72-311 synthetic hexaploid, G2-TRB-89-348 advanced line, and G3-Pirsabak-19-approved variety), Zn application methods (AM1: no Zn application, AM2: seed priming with 0.5% Zn, AM3: soil application of 10 kg ha−1 Zn, and AM4: foliar application of 0.5% Zn), and the experiment also explored the use of ZSB (BF1: with bacteria, BF0: without bacteria) to cope with Zn deficiency. The study revealed significant impacts on wheat’s Zn content, uptake, and nutrient efficiency, arising from genotypes variance, Zn application approaches, and ZSB. TRB-72-311 synthetic hexaploid genotype with 0.5% foliar Zn and ZSB excelled, enhancing grain (17.8%) and straw Zn (23.1%), increasing total Zn uptake (55.0%), reducing grain phytic acid (11.7%), and boosting Zn-related efficiencies in wheat. These results prompt further discussion regarding the potential implications for agricultural practices. In conclusion, utilizing the TRB-72-311 genotype with 0.5% foliar Zn application and ZSB enhances wheat’s Zn content, uptake, grain quality, and addresses malnutrition

    A critical review on metal-organic frameworks (MOFs) based nanomaterials for biomedical applications: Designing, recent trends, challenges, and prospects

    No full text
    Nanomaterials (NMs) have garnered significant attention in recent decades due to their versatile applications in a wide range of fields. Thanks to their tiny size, enhanced surface modifications, impressive volume-to-surface area ratio, magnetic properties, and customized optical dispersion. NMs experienced an incredible upsurge in biomedical applications including diagnostics, therapeutics, and drug delivery. This minireview will focus on notable examples of NMs that tackle important issues, demonstrating various aspects such as their design, synthesis, morphology, classification, and use in cutting-edge applications. Furthermore, we have classified and outlined the distinctive characteristics of the advanced NMs as nanoscale particles and hybrid NMs. Meanwhile, we emphasize the incredible potential of metal-organic frameworks (MOFs), a highly versatile group of NMs. These MOFs have gained recognition as promising candidates for a wide range of bio-applications, including bioimaging, biosensing, antiviral therapy, anticancer therapy, nanomedicines, theranostics, immunotherapy, photodynamic therapy, photothermal therapy, gene therapy, and drug delivery. Although advanced NMs have shown great potential in the biomedical field, their use in clinical applications is still limited by issues such as stability, cytotoxicity, biocompatibility, and health concerns. This review article provides a thorough analysis offering valuable insights for researchers investigating to explore new design, development, and expansion opportunities. Remarkably, we ponder the prospects of NMs and nanocomposites in conjunction with current technology

    Preparation of visible-light active MOFs-Perovskites (ZIF-67/LaFeO3) nanocatalysts for exceptional CO2 conversion, organic pollutants and antibiotics degradation

    No full text
    Modern industries rapid expansion has heightened energy needs and accelerated fossil fuel depletion, contributing to global warming. Additionally, organic pollutants present substantial risks to aquatic ecosystems due to their stability, insolubility, and non-biodegradability. Scientists are currently researching high-performance materials to address these issues. LaFeO3 nanosheets (LFO-NS) were synthesized in this study using a solvothermal method with polyvinylpyrrolidone (PVP) as a soft template. The LFO-NS demonstrate superior performance, large surface area and charge separation than that of LaFeO3 nanoparticles (LFO-NP). The LFO-NS performance is further upgraded by incorporating ZIF-67. Our results confirmed the ZIF-67/LFO-NS nanocomposite have superior performances than pure LFO-NP and ZIF-67. The integration of ZIF-67 has enhanced the charge separation and promote the surface area of LFO-NSwhich was confirmed by various characterization techniques including TEM, HRTEM, DRS, EDX, XRD, FS, XPS, FT-IR, BET, PL, and RAMAN. The 5ZIF-67/LFO-NS sample showed significant activities for CO2 conversion, malachite green degradation, and antibiotics (cefazolin, oxacillin, and vancomycin) degradation. Furthermore, stability tests have confirmed that our optimal sample very active and stable. Furthermore, based on scavenger experiments and the photocatalytic degradation pathways, it has been established that H+ and •O2− are vital in the decomposition of MG and antibiotics. Our research work will open new gateways to prepare MOFs-Perovskites nanocatalysts for exceptional CO2 conversion, organic pollutants and antibiotics degradation
    corecore