1 research outputs found

    Probing pattern and dynamics of disulfide bridges using synthesis and NMR of an ion channel blocker peptide toxin with multiple diselenide bonds

    Get PDF
    Anuroctoxin (AnTx), a 35-amino-acid scorpion toxin containing four disulfide bridges, is a high affinity blocker of the voltage-gated potassium channel Kv1.3, but also blocks Kv1.2. To improve potential therapeutic use of the toxin, we have designed a double substituted analog, N17A/F32T-AnTx{,} which showed comparable Kv1.3 affinity to the wild-type peptide{,} but also a 2500-fold increase in the selectivity for Kv1.3 over Kv1.2. In the present study we have achieved the chemical synthesis of a Sec-analog in which all cysteine (Cys) residues have been replaced by selenocysteine (Sec) forming four diselenide bonds. To the best of our knowledge this is the first time to replace{,} by chemical synthesis{,} all disulfide bonds with isosteric diselenides in a peptide/protein. Gratifyingly{,} the key pharmacological properties of the Sec-N17A/F32T-AnTx are retained since the peptide is functionally active. We also propose here a combined experimental and theoretical approach including NOE- and 77Se-based NMR supplemented by MD simulations for conformational and dynamic characterization of the Sec-N17A/F32T-AnTx. Using this combined approach allowed us to attain unequivocal assignment of all four diselenide bonds and supplemental MD simulations allowed characterization of the conformational dynamics around each disulfide/diselenide bridge
    corecore