419 research outputs found

    Long-distance entanglement and quantum teleportation in XX spin chains

    Full text link
    Isotropic XX models of one-dimensional spin-1/2 chains are investigated with the aim to elucidate the formal structure and the physical properties that allow these systems to act as channels for long-distance, high-fidelity quantum teleportation. We introduce two types of models: I) open, dimerized XX chains, and II) open XX chains with small end bonds. For both models we obtain the exact expressions for the end-to-end correlations and the scaling of the energy gap with the length of the chain. We determine the end-to-end concurrence and show that model I) supports true long-distance entanglement at zero temperature, while model II) supports {\it ``quasi long-distance''} entanglement that slowly falls off with the size of the chain. Due to the different scalings of the gaps, respectively exponential for model I) and algebraic in model II), we demonstrate that the latter allows for efficient qubit teleportation with high fidelity in sufficiently long chains even at moderately low temperatures.Comment: 9 pages, 6 figure

    Decoherence of number states in phase-sensitive reservoirs

    Full text link
    The non-unitary evolution of initial number states in general Gaussian environments is solved analytically. Decoherence in the channels is quantified by determining explicitly the purity of the state at any time. The influence of the squeezing of the bath on decoherence is discussed. The behavior of coherent superpositions of number states is addressed as well.Comment: 5 pages, 2 figures, minor changes, references adde

    Quantifying nonclassicality: global impact of local unitary evolutions

    Full text link
    We show that only those composite quantum systems possessing nonvanishing quantum correlations have the property that any nontrivial local unitary evolution changes their global state. We derive the exact relation between the global state change induced by local unitary evolutions and the amount of quantum correlations. We prove that the minimal change coincides with the geometric measure of discord (defined via the Hilbert- Schmidt norm), thus providing the latter with an operational interpretation in terms of the capability of a local unitary dynamics to modify a global state. We establish that two-qubit Werner states are maximally quantum correlated, and are thus the ones that maximize this type of global quantum effect. Finally, we show that similar results hold when replacing the Hilbert-Schmidt norm with the trace norm.Comment: 5 pages, 1 figure. To appear in Physical Review

    Continuous variable tangle, monogamy inequality, and entanglement sharing in Gaussian states of continuous variable systems

    Full text link
    For continuous-variable systems, we introduce a measure of entanglement, the continuous variable tangle ({\em contangle}), with the purpose of quantifying the distributed (shared) entanglement in multimode, multipartite Gaussian states. This is achieved by a proper convex roof extension of the squared logarithmic negativity. We prove that the contangle satisfies the Coffman-Kundu-Wootters monogamy inequality in all three--mode Gaussian states, and in all fully symmetric NN--mode Gaussian states, for arbitrary NN. For three--mode pure states we prove that the residual entanglement is a genuine tripartite entanglement monotone under Gaussian local operations and classical communication. We show that pure, symmetric three--mode Gaussian states allow a promiscuous entanglement sharing, having both maximum tripartite residual entanglement and maximum couplewise entanglement between any pair of modes. These states are thus simultaneous continuous-variable analogs of both the GHZ and the WW states of three qubits: in continuous-variable systems monogamy does not prevent promiscuity, and the inequivalence between different classes of maximally entangled states, holding for systems of three or more qubits, is removed.Comment: 13 pages, 1 figure. Replaced with published versio

    On reduced density matrices for disjoint subsystems

    Full text link
    We show that spin and fermion representations for solvable quantum chains lead in general to different reduced density matrices if the subsystem is not singly connected. We study the effect for two sites in XX and XY chains as well as for sublattices in XX and transverse Ising chains.Comment: 10 pages, 4 figure

    Hierarchies of Geometric Entanglement

    Full text link
    We introduce a class of generalized geometric measures of entanglement. For pure quantum states of NN elementary subsystems, they are defined as the distances from the sets of KK-separable states (K=2,...,NK=2,...,N). The entire set of generalized geometric measures provides a quantification and hierarchical ordering of the different bipartite and multipartite components of the global geometric entanglement, and allows to discriminate among the different contributions. The extended measures are applied to the study of entanglement in different classes of NN-qubit pure states. These classes include WW and GHZGHZ states, and their symmetric superpositions; symmetric multi-magnon states; cluster states; and, finally, asymmetric generalized WW-like superposition states. We discuss in detail a general method for the explicit evaluation of the multipartite components of geometric entanglement, and we show that the entire set of geometric measures establishes an ordering among the different types of bipartite and multipartite entanglement. In particular, it determines a consistent hierarchy between GHZGHZ and WW states, clarifying the original result of Wei and Goldbart that WW states possess a larger global entanglement than GHZGHZ states. Furthermore, we show that all multipartite components of geometric entanglement in symmetric states obey a property of self-similarity and scale invariance with the total number of qubits and the number of qubits per party.Comment: 16 pages, 7 figures. Final version, to appear in Phys. Rev.

    Multipartite entanglement in three-mode Gaussian states of continuous variable systems: Quantification, sharing structure and decoherence

    Full text link
    We present a complete analysis of multipartite entanglement of three-mode Gaussian states of continuous variable systems. We derive standard forms which characterize the covariance matrix of pure and mixed three-mode Gaussian states up to local unitary operations, showing that the local entropies of pure Gaussian states are bound to fulfill a relationship which is stricter than the general Araki-Lieb inequality. Quantum correlations will be quantified by a proper convex roof extension of the squared logarithmic negativity (the contangle), satisfying a monogamy relation for multimode Gaussian states, whose proof will be reviewed and elucidated. The residual contangle, emerging from the monogamy inequality, is an entanglement monotone under Gaussian local operations and classical communication and defines a measure of genuine tripartite entanglement. We analytically determine the residual contangle for arbitrary pure three-mode Gaussian states and study the distribution of quantum correlations for such states. This will lead us to show that pure, symmetric states allow for a promiscuous entanglement sharing, having both maximum tripartite residual entanglement and maximum couplewise entanglement between any pair of modes. We thus name these states GHZ/WW states of continuous variable systems because they are simultaneous continuous-variable counterparts of both the GHZ and the WW states of three qubits. We finally consider the action of decoherence on tripartite entangled Gaussian states, studying the decay of the residual contangle. The GHZ/WW states are shown to be maximally robust under both losses and thermal noise.Comment: 20 pages, 5 figures. (v2) References updated, published versio

    A multidisciplinary approach to study the reproductive biology of wild prawns

    Get PDF
    This work aims to provide deeper knowledge on reproductive biology of P. kerathurus in a multidisciplinary way. Upon 789 examined females, 285 were found inseminated. The logistic equation enabled to estimate the size at first maturity at 30.7 mm CL for female. The Gono-Somatic Index (GSI) showed a pronounced seasonality, ranged from 0.80 ± 0.34 to 11.24 ± 5.72. Histological analysis highlighted five stages of ovarian development. Gonadal fatty acids analysis performed with gas chromatograph evidenced a pronounced seasonal variation; total lipids varied from 1.7% dry weight (dw) in Winter, to 7.2% dw in Summer. For the first time, a chemometric approach (Principal Component Analysis) was applied to relate GSI with total lipid content and fatty acid composition of gonads. The first two components (PC1 and PC2) showed that seasonality explained about 84% of the variability of all data set. In particular, in the period February-May, lipids were characterized by high PUFAs content, that were probably utilized during embryogenesis as energy source and as constituent of the cell membranes. During the summer season, gonads accumulated saturated FAs, that will be used during embryogenesis and early larval stages, while in the cold season total lipids decreased drastically and the gonad reached a quiescent state

    Characterization of separability and entanglement in (2Ă—D)(2\times{D})- and (3Ă—D)(3\times{D})-dimensional systems by single-qubit and single-qutrit unitary transformations

    Full text link
    We investigate the geometric characterization of pure state bipartite entanglement of (2Ă—D)(2\times{D})- and (3Ă—D)(3\times{D})-dimensional composite quantum systems. To this aim, we analyze the relationship between states and their images under the action of particular classes of local unitary operations. We find that invariance of states under the action of single-qubit and single-qutrit transformations is a necessary and sufficient condition for separability. We demonstrate that in the (2Ă—D)(2\times{D})-dimensional case the von Neumann entropy of entanglement is a monotonic function of the minimum squared Euclidean distance between states and their images over the set of single qubit unitary transformations. Moreover, both in the (2Ă—D)(2\times{D})- and in the (3Ă—D)(3\times{D})-dimensional cases the minimum squared Euclidean distance exactly coincides with the linear entropy (and thus as well with the tangle measure of entanglement in the (2Ă—D)(2\times{D})-dimensional case). These results provide a geometric characterization of entanglement measures originally established in informational frameworks. Consequences and applications of the formalism to quantum critical phenomena in spin systems are discussed.Comment: 8 pages, 1 figur

    Multipartite Entanglement and Frustration

    Full text link
    Some features of the global entanglement of a composed quantum system can be quantified in terms of the purity of a balanced bipartition, made up of half of its subsystems. For the given bipartition, purity can always be minimized by taking a suitable (pure) state. When many bipartitions are considered, the requirement that purity be minimal for all bipartitions can engender conflicts and frustration arises. This unearths an interesting link between frustration and multipartite entanglement, defined as the average purity over all (balanced) bipartitions.Comment: 15 pages, 7 figure
    • …
    corecore