457 research outputs found

    High Speed Chaos in Optical Feedback System with Flexible Timescales

    Full text link
    We describe a new opto-electronic device with time-delayed feedback that uses a Mach-Zehnder interferometer as passive nonlinearity and a semiconductor laser as a current-to-optical-frequency converter. Bandlimited feedback allows tuning of the characteristic time scales of both the periodic and high dimensional chaotic oscillations that can be generated with the device. Our implementation of the device produces oscillations in the frequency range of tens to hundreds of MHz. We develop a model and use it to explore the experimentally observed Andronov-Hopf bifurcation of the steady state and to estimate the dimension of the chaotic attractor.Comment: 7 pages, 6 figures, to be published in IEEE J. Quantum Electro

    The Fine-Structure of the Net-Circular Polarization in a Sunspot Penumbra

    Full text link
    We present novel evidence for a fine structure observed in the net-circular polarization (NCP) of a sunspot penumbra based on spectropolarimetric measurements utilizing the Zeeman sensitive FeI 630.2 nm line. For the first time we detect a filamentary organized fine structure of the NCP on spatial scales that are similar to the inhomogeneities found in the penumbral flow field. We also observe an additional property of the visible NCP, a zero-crossing of the NCP in the outer parts of the center-side penumbra, which has not been recognized before. In order to interprete the observations we solve the radiative transfer equations for polarized light in a model penumbra with embedded magnetic flux tubes. We demonstrate that the observed zero-crossing of the NCP can be explained by an increased magnetic field strength inside magnetic flux tubes in the outer penumbra combined with a decreased magnetic field strength in the background field. Our results strongly support the concept of the uncombed penumbra

    Controlling Fast Chaos in Delay Dynamical Systems

    Full text link
    We introduce a novel approach for controlling fast chaos in time-delay dynamical systems and use it to control a chaotic photonic device with a characteristic time scale of ~12 ns. Our approach is a prescription for how to implement existing chaos control algorithms in a way that exploits the system's inherent time-delay and allows control even in the presence of substantial control-loop latency (the finite time it takes signals to propagate through the components in the controller). This research paves the way for applications exploiting fast control of chaos, such as chaos-based communication schemes and stabilizing the behavior of ultrafast lasers.Comment: 4 pages, 4 figures, to be published in Physical Review Letter

    Spatial Relationship between Solar Flares and Coronal Mass Ejections

    Full text link
    We report on the spatial relationship between solar flares and coronal mass ejections (CMEs) observed during 1996-2005 inclusive. We identified 496 flare-CME pairs considering limb flares (distance from central meridian > 45 deg) with soft X-ray flare size > C3 level. The CMEs were detected by the Large Angle and Spectrometric Coronagraph (LASCO) on board the Solar and Heliospheric Observatory (SOHO). We investigated the flare positions with respect to the CME span for the events with X-class, M-class, and C-class flares separately. It is found that the most frequent flare site is at the center of the CME span for all the three classes, but that frequency is different for the different classes. Many X-class flares often lie at the center of the associated CME, while C-class flares widely spread to the outside of the CME span. The former is different from previous studies, which concluded that no preferred flare site exists. We compared our result with the previous studies and conclude that the long-term LASCO observation enabled us to obtain the detailed spatial relation between flares and CMEs. Our finding calls for a closer flare-CME relationship and supports eruption models typified by the CSHKP magnetic reconnection model.Comment: 7 pages; 4 figures; Accepted by the Astrophysical Journa

    Were Malagasy Uncarina fruits dispersed by the extinct elephant bird?

    Get PDF
    We hypothesise that the spiny fruits of the endemic Madagascar genus Uncarina (Pedaliaceae) are trample burrs that evolved to be dispersed on the feet of the extinct elephant bird (Aepyornis). Our evidence is : i) the morphology of the fruit with its large grapple hooks is more likely to attach to a foot than to adhere to fur and ii) the presentation of mature fruits on the ground rather than in the canopy. These differences to adhesive burrs make lemurs unlikely dispersers. We argue, given the absence of other large terrestrial mammals in Madagascar, that the most likely dispersers of Uncarina fruits were the extinct large birds. If correct, our hypothesis has implications for conservation of Uncarina, the biogeography of the elephant birds and dispersal biology. For example, we predict that the demography of Uncarina will be skewed towards adult plants, and that the dispersal mutualism could possibly be rescued by domestic animals

    The Relationship of Coronal Mass Ejections to Streamers

    Get PDF
    We have examined images from the Large Angle Spectroscopic Coronagraph (LASCO) to study the relationship of Coronal Mass Ejections (CMEs) to coronal streamers. We wish to test the suggestion (Low 1996) that CMEs arise from flux ropes embedded in a streamer erupting, thus disrupting the streamer. The data span a period of two years near sunspot minimum through a period of increased activity as sunspot numbers increased. We have used LASCO data from the C2 coronagraph which records Thomson scattered white light from coronal electrons at heights between 1.5 and 6R_sun. Maps of the coronal streamers have been constructed from LASCO C2 observations at a height of 2.5R_sun at the east and west limbs. We have superposed the corresponding positions of CMEs observed with the C2 coronagraph onto the synoptic maps. We identified the different kinds of signatures CMEs leave on the streamer structure at this height (2.5R_sun). We find four types of CMEs with respect to their effect on streamers: 1. CMEs that disrupt the streamer 2. CMEs that have no effect on the streamer, even though they are related to it. 3. CMEs that create streamer-like structures 4. CMEs that are latitudinally displaced from the streamer. This is the most extensive observational study of the relation between CMEs and streamers to date. Previous studies using SMM data have made the general statement that CMEs are mostly associated with streamers, and that they frequently disrupt it. However, we find that approximately 35% of the observed CMEs bear no relation to the pre-existing streamer, while 46% have no effect on the observed streamer, even though they appear to be related to it. Our conclusions thus differ considerably from those of previous studies.Comment: Accepted, Journal of Geophysical Research. 8 figs, better versions at http://www.science.gmu.edu/~prasads/streamer.htm

    Flow Annealed Importance Sampling Bootstrap

    Full text link
    Normalizing flows are tractable density models that can approximate complicated target distributions, e.g. Boltzmann distributions of physical systems. However, current methods for training flows either suffer from mode-seeking behavior, use samples from the target generated beforehand by expensive MCMC simulations, or use stochastic losses that have very high variance. To avoid these problems, we augment flows with annealed importance sampling (AIS) and minimize the mass covering α\alpha-divergence with α=2\alpha=2, which minimizes importance weight variance. Our method, Flow AIS Bootstrap (FAB), uses AIS to generate samples in regions where the flow is a poor approximation of the target, facilitating the discovery of new modes. We target with AIS the minimum variance distribution for the estimation of the α\alpha-divergence via importance sampling. We also use a prioritized buffer to store and reuse AIS samples. These two features significantly improve FAB's performance. We apply FAB to complex multimodal targets and show that we can approximate them very accurately where previous methods fail. To the best of our knowledge, we are the first to learn the Boltzmann distribution of the alanine dipeptide molecule using only the unnormalized target density and without access to samples generated via Molecular Dynamics (MD) simulations: FAB produces better results than training via maximum likelihood on MD samples while using 100 times fewer target evaluations. After reweighting samples with importance weights, we obtain unbiased histograms of dihedral angles that are almost identical to the ground truth ones

    Using an Ellipsoid Model to Track and Predict the Evolution and Propagation of Coronal Mass Ejections

    Full text link
    We present a method for tracking and predicting the propagation and evolution of coronal mass ejections (CMEs) using the imagers on the STEREO and SOHO satellites. By empirically modeling the material between the inner core and leading edge of a CME as an expanding, outward propagating ellipsoid, we track its evolution in three-dimensional space. Though more complex empirical CME models have been developed, we examine the accuracy of this relatively simple geometric model, which incorporates relatively few physical assumptions, including i) a constant propagation angle and ii) an azimuthally symmetric structure. Testing our ellipsoid model developed herein on three separate CMEs, we find that it is an effective tool for predicting the arrival of density enhancements and the duration of each event near 1 AU. For each CME studied, the trends in the trajectory, as well as the radial and transverse expansion are studied from 0 to ~.3 AU to create predictions at 1 AU with an average accuracy of 2.9 hours.Comment: 18 pages, 11 figure

    Chaotic Free-Space Laser Communication over Turbulent Channel

    Get PDF
    The dynamics of errors caused by atmospheric turbulence in a self-synchronizing chaos based communication system that stably transmits information over a ∼\sim5 km free-space laser link is studied experimentally. Binary information is transmitted using a chaotic sequence of short-term pulses as carrier. The information signal slightly shifts the chaotic time position of each pulse depending on the information bit. We report the results of an experimental analysis of the atmospheric turbulence in the channel and the impact of turbulence on the Bit-Error-Rate (BER) performance of this chaos based communication system.Comment: 4 pages, 5 figure

    Evolution of multi-parametric MRI quantitative parameters following transrectal ultrasound-guided biopsy of the prostate

    Get PDF
    To determine the evolution of prostatic multi-parametric magnetic resonance imaging (mp-MRI) signal following transrectal ultrasound (TRUS)-guided biopsy
    • …
    corecore