21 research outputs found

    Identification of RNA markers associated with Parkinson's disease using multiplex gene expression analysis

    Get PDF
    Introduction. Parkinson's disease (PD) is a neurodegenerative disorder, and the development of biomarkers is essential due to complicated PD diagnosis and progression assessment. Objective. To identify PD RNA markers by multiplex expression profiling of 760 genes associated with the main neuropathological processes. Materials and methods. We studied the expression of 760 genes associated with the main neuropathological processes using Nanostring nCounter Human Neuropathology Panel in 29 blood samples obtained from PD patients, including 13 samples from those in the early stage and 16 samples from those in the advanced stage, and in 16 control blood samples. Results. The comparison of gene expression in the patients with early PD and in the controls demonstrated differential expression of genes CDKN1A and CPT1B. The comparison of gene expression in the patients with advanced PD and in the controls showed LRP1 upregulation in the advanced PD group. We also revealed ĐĄPT1B upregulation in advanced disease, with a positive correlation between ĐĄPT1B expression and PD duration. Discussion. The variably expressed genes may be relevant as PD biomarkers for diagnosis and progression assessment

    Morphological Changes in Neural Progenitors Derived from Human Induced Pluripotent Stem Cells and Transplanted into the Striatum of a Parkinson's Disease Rat Model

    Get PDF
    Introduction. Development of cell therapy for Parkinson's disease (PD) requires protocols based on transplantation of neurons derived from human induced pluripotent stem cells (hiPSCs) into the damaged area of the brain. Objective: to characterize neurons transplanted into a rat brain and evaluate neural transplantation efficacy using a PD animal model. Materials and methods. Neurons derived from hiPSCs (IPSRG4S line) were transplanted into the striatum of rats after intranigral injection of 6-hydroxydopamine (6-OHDA). Immunostaining was performed to identify expression of glial and neuronal markers in the transplanted cells within 224 weeks posttransplant. Results. 4 weeks posttransplant we observed increased expression of mature neuron markers, decreased expression of neural progenitor markers, and primary pro-inflammatory response of glial cells in the graft. Differentiation and maturation of neuronal cells in the graft lasted over 3 months. At 3 and 6 months we detected 2 graft zones: one mainly contained the transplanted neurons and the other human astrocytes. We detected human neurites in the corpus callosum and surrounding striatal tissue and large human tyrosine hydroxylase-expressing neurons in the graft. Conclusion. With graft's morphological characteristics identified at different periods we can better understand pathophysiology and temporal patterns of new dopaminergic neurons integration and striatal reinnervation in a rat PD model in the long-term postoperative period

    Salivary gland immunohistochemistry vs substantia nigra sonography: comparative analysis of diagnostic significance

    Get PDF
    Introduction. Parkinson's disease (PD) urges for new instrumental methods of diagnosis. Transcranial sonography of the substantia nigra (SN TCS) is an established method for early PD diagnosis but its application is limited. Recently, biopsies (primarily that of salivary gland) and test for abnormal -synuclein are suggested to verify PD. Materials and methods. We assessed 12 individuals with PD, HoehnYahr 2.3 0.4. The assessments included: UPDRS, NMSQ, NMSS, RBDSQ, PDQ-8, MoCA, and HADS scoring; SN TCS; and sublingual gland immunohistochemistry for phosphorylated -synuclein (PS-129) with automated morphometric analysis. Results. Substantia nigra hyperechogenicity was shown in 75% of patients whereas biopsy revealed PS-129 in 100% of patients. Echogenic area of the substantia nigra was 0.24 [0.21; 0.3] cm2. PS-129 inclusion area varied from 28.47 [27.55; 96.26] to 238.77 [234.13; 272.49] m2, and PS-129 proportion varied from 13.4% to 93.4% of the nervous fiber area across the patients. We found relations between PS-129 and NMSQ (r = 0.8; p 0.001), NMSS (r = 0.9; p 0.001), PDQ-8 (r = 0.7; p = 0.003), UPDRS-I (r = 0.7; p = 0.009), UPDRS-II (r = 0.6; p = 0.03), and HADS (anxiety r = 0.8; p = 0.002; depression r = 0.6; p = 0.04) scores. Conclusion. The results demonstrate a higher biopsy sensitivity as compared to SN TCS. Automated morphometric analysis has been newly applied to assess PS-129 occurrence. Immunohistochemistry results are directly related to non-motor symptom severity, which may indicate high probability of PS-129 presence and diagnosis confirmation in early disease

    C9ORF72 hexanucleotide repeat expansion in ALS patients from the Central European Russia population

    Get PDF
    Cohorts of amyotrophic lateral sclerosis (ALS) patients and control individuals of Caucasian origin from the Central European Russia (Moscow city and region) were analyzed for the presence of hexanucleotide repeat GGGGCC expansion within the first intron of the C9ORF72 gene. The presence of a large (>40) repeat expansion was found in 15% of familial ALS cases (3 of 20 unrelated familial cases) and 2.5% of sporadic ALS cases (6 of 238) but in none of control cases. These results suggest that the frequency of C9ORF72 hexanucleotide repeats expansions in the Central Europea

    Substitution of Met-38 to Ile in Îł-synuclein found in two patients with amyotrophic lateral sclerosis induces aggregation into amyloid

    Get PDF
    α-, ÎČ-, and Îł-Synuclein are intrinsically disordered proteins implicated in physiological processes in the nervous system of vertebrates. α-synuclein (αSyn) is the amyloidogenic protein associated with Parkinson’s disease and certain other neurodegenerative disorders. Intensive research has focused on the mechanisms that cause αSyn to form amyloid structures, identifying its NAC region as being necessary and sufficient for amyloid assembly. Recent work has shown that a 7-residue sequence (P1) is necessary for αSyn amyloid formation. Although Îł-synuclein (ÎłSyn) is 55% identical in sequence to αSyn and its pathological deposits are also observed in association with neurodegenerative conditions, ÎłSyn is resilient to amyloid formation in vitro. Here, we report a rare single nucleotide polymorphism (SNP) in the SNCG gene encoding ÎłSyn, found in two patients with amyotrophic lateral sclerosis (ALS). The SNP results in the substitution of Met38 with Ile in the P1 region of the protein. These individuals also had a second, common and nonpathological, SNP in SNCG resulting in the substitution of Glu110 with Val. In vitro studies demonstrate that the Ile38 variant accelerates amyloid fibril assembly. Contrastingly, Val110 retards fibril assembly and mitigates the effect of Ile38. Substitution of residue 38 with Leu had little effect, while Val retards, and Ala increases the rate of amyloid formation. Ile38 ÎłSyn also results in the formation of ÎłSyn-containing inclusions in cells. The results show how a single point substitution can enhance amyloid formation of ÎłSyn and highlight the P1 region in driving amyloid formation in another synuclein family member

    Establishing an online resource to facilitate global collaboration and inclusion of underrepresented populations:Experience from the MJFF Global Genetic Parkinson's Disease Project

    Get PDF
    Parkinson's disease (PD) is the fastest-growing neurodegenerative disorder, currently affecting ~7 million people worldwide. PD is clinically and genetically heterogeneous, with at least 10% of all cases explained by a monogenic cause or strong genetic risk factor. However, the vast majority of our present data on monogenic PD is based on the investigation of patients of European White ancestry, leaving a large knowledge gap on monogenic PD in underrepresented populations. Gene-targeted therapies are being developed at a fast pace and have started entering clinical trials. In light of these developments, building a global network of centers working on monogenic PD, fostering collaborative research, and establishing a clinical trial-ready cohort is imperative. Based on a systematic review of the English literature on monogenic PD and a successful team science approach, we have built up a network of 59 sites worldwide and have collected information on the availability of data, biomaterials, and facilities. To enable access to this resource and to foster collaboration across centers, as well as between academia and industry, we have developed an interactive map and online tool allowing for a quick overview of available resources, along with an option to filter for specific items of interest. This initiative is currently being merged with the Global Parkinson's Genetics Program (GP2), which will attract additional centers with a focus on underrepresented sites. This growing resource and tool will facilitate collaborative research and impact the development and testing of new therapies for monogenic and potentially for idiopathic PD patients.</p

    Embracing monogenic Parkinson's disease: the MJFF Global Genetic PD Cohort

    Get PDF
    © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.Background: As gene-targeted therapies are increasingly being developed for Parkinson's disease (PD), identifying and characterizing carriers of specific genetic pathogenic variants is imperative. Only a small fraction of the estimated number of subjects with monogenic PD worldwide are currently represented in the literature and availability of clinical data and clinical trial-ready cohorts is limited. Objective: The objectives are to (1) establish an international cohort of affected and unaffected individuals with PD-linked variants; (2) provide harmonized and quality-controlled clinical characterization data for each included individual; and (3) further promote collaboration of researchers in the field of monogenic PD. Methods: We conducted a worldwide, systematic online survey to collect individual-level data on individuals with PD-linked variants in SNCA, LRRK2, VPS35, PRKN, PINK1, DJ-1, as well as selected pathogenic and risk variants in GBA and corresponding demographic, clinical, and genetic data. All registered cases underwent thorough quality checks, and pathogenicity scoring of the variants and genotype-phenotype relationships were analyzed. Results: We collected 3888 variant carriers for our analyses, reported by 92 centers (42 countries) worldwide. Of the included individuals, 3185 had a diagnosis of PD (ie, 1306 LRRK2, 115 SNCA, 23 VPS35, 429 PRKN, 75 PINK1, 13 DJ-1, and 1224 GBA) and 703 were unaffected (ie, 328 LRRK2, 32 SNCA, 3 VPS35, 1 PRKN, 1 PINK1, and 338 GBA). In total, we identified 269 different pathogenic variants; 1322 individuals in our cohort (34%) were indicated as not previously published. Conclusions: Within the MJFF Global Genetic PD Study Group, we (1) established the largest international cohort of affected and unaffected individuals carrying PD-linked variants; (2) provide harmonized and quality-controlled clinical and genetic data for each included individual; (3) promote collaboration in the field of genetic PD with a view toward clinical and genetic stratification of patients for gene-targeted clinical trials. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.Michael J. Fox Foundation for Parkinson's Research. Grant Number: ID 15015.02. NIHR Cambridge Biomedical Research Centre. Grant Number: BRC-1215-20014info:eu-repo/semantics/publishedVersio

    SNCA Gene Methylation in Parkinson&rsquo;s Disease and Multiple System Atrophy

    No full text
    In recent years, epigenetic mechanisms have been implicated in the development of multifactorial diseases including neurodegenerative disorders. In Parkinson&rsquo;s disease (PD), as a synucleinopathy, most studies focused on DNA methylation of SNCA gene coding alpha-synuclein but obtained results were rather contradictory. In another neurodegenerative synucleinopathy, multiple system atrophy (MSA), very few studies investigated the epigenetic regulation. This study included patients with PD (n = 82), patients with MSA (n = 24), and a control group (n = 50). In three groups, methylation levels of CpG and non-CpG sites in regulatory regions of the SNCA gene were analyzed. We revealed hypomethylation of CpG sites in the SNCA intron 1 in PD and hypermethylation of predominantly non-CpG sites in the SNCA promoter region in MSA. In PD patients, hypomethylation in the intron 1 was associated with earlier age at the disease onset. In MSA patients, hypermethylation in the promotor was associated with shorter disease duration (before examination). These results showed different patterns of the epigenetic regulation in two synucleinopathies&mdash;PD and MSA

    Genetic Variant in <i>GRM1</i> Underlies Congenital Cerebellar Ataxia with No Obvious Intellectual Disability

    No full text
    Metabotropic glutamate receptor 1 (mGluR1) plays a crucial role in slow excitatory postsynaptic conductance, synapse formation, synaptic plasticity, and motor control. The GRM1 gene is expressed mainly in the brain, with the highest expression in the cerebellum. Mutations in the GRM1 gene have previously been known to cause autosomal recessive and autosomal dominant spinocerebellar ataxias. In this study, whole-exome sequencing of a patient from a family of Azerbaijani origin with a diagnosis of congenital cerebellar ataxia was performed, and a new homozygous missense mutation in the GRM1 gene was identified. The mutation leads to the homozygous amino acid substitution of p.Thr824Arg in an evolutionarily highly conserved region encoding the transmembrane domain 7, which is critical for ligand binding and modulating of receptor activity. This is the first report in which a mutation has been identified in the last transmembrane domain of the mGluR1, causing a congenital autosomal recessive form of cerebellar ataxia with no obvious intellectual disability. Additionally, we summarized all known presumable pathogenic genetic variants in the GRM1 gene to date. We demonstrated that multiple rare variants in the GRM1 underlie a broad diversity of clinical neurological and behavioral phenotypes depending on the nature and protein topology of the mutation

    Involvement of Endocytosis and Alternative Splicing in the Formation of the Pathological Process in the Early Stages of Parkinson’s Disease

    No full text
    Parkinson’s disease (PD) is the one of most widespread neurodegenerative pathologies. Because of the impossibility of studying the endogenous processes that occur in the brain of patients with PD in the presymptomatic stage, the mechanisms that trigger the disease remain unknown. Thus, the identification of the processes that play an important role in the early stages of the disease in these patients is extremely difficult. In this context, we performed a whole-transcriptome analysis of the peripheral blood of untreated patients with stage 1 PD (Hoehn-Yahr scale). We demonstrated a significant change in the levels of transcripts included in the large groups of processes associated with the functioning of the immune system and cellular transport. Moreover, a significant change in the splicing of genes involved in cellular-transport processes was shown in our study
    corecore