192 research outputs found

    Hard X-ray emitting black hole fed by accretion of low angular momentum matter

    Get PDF
    Observed spectra of Active Galactic Nuclei (AGN) and luminous X-ray binaries in our Galaxy suggest that both hot (~10^9 K) and cold (~10^6 K) plasma components exist close to the central accreting black hole. Hard X-ray component of the spectra is usually explained by Compton upscattering of optical/UV photons from optically thick cold plasma by hot electrons. Observations also indicate that some of these objects are quite efficient in converting gravitational energy of accretion matter into radiation. Existing theoretical models have difficulties in explaining the two plasma components and high intensity of hard X-rays. Most of the models assume that the hot component emerges from the cold one due to some kind of instability, but no one offers a satisfactory physical explanation for this. Here we propose a solution to these difficulties that reverses what was imagined previously: in our model the hot component forms first and afterward it cools down to form the cold component. In our model, accretion flow has initially a small angular momentum, and thus it has a quasi-spherical geometry at large radii. Close to the black hole, the accreting matter is heated up in shocks that form due to the action of the centrifugal force. The hot post-shock matter is very efficiently cooled down by Comptonization of low energy photons and condensates into a thin and cold accretion disk. The thin disk emits the low energy photons which cool the hot component.Comment: 15 pages, 2 figures, submitted to ApJ Let

    Deuteron distribution in nuclear matter

    Get PDF
    We analyze the properties of deuteron-like structures in infinite, correlated nuclear matter, described by a realistic hamiltonian containing the Urbana v14v_{14} two-nucleon and the Urbana TNI many-body potentials. The distribution of neutron-proton pairs, carrying the deuteron quantum numbers, is obtained as a function of the total momentum by computing the overlap between the nuclear matter in its ground state and the deuteron wave functions in correlated basis functions theory. We study the differences between the S- and D-wave components of the deuteron and those of the deuteron-like pair in the nuclear medium. The total number of deuteron type pairs is computed and compared with the predictions of Levinger's quasideuteron model. The resulting Levinger's factor in nuclear matter at equilibrium densityis 11.63. We use the local density approximation to estimate the Levinger's factor for heavy nuclei, obtaining results which are consistent with the available experimental data from photoreactions.Comment: 22 pages, 7 figures, typeset using REVTe

    Fracture surface analysis of a quenched (α+β)-metastable titanium alloy

    Full text link
    Fracture surface analysis is conducted by means of SEM for VT16 titanium alloy specimens solution-treated at temperatures ranging from 700 to 875 °C, water-quenched and subjected to tensile testing. A cup and cone shape failure and dimple microstructure of the fracture surface indicates the ductile behavior of the alloy. Dimple dimensions correlated with the β-grain size of the alloy in quenched condition. The fracture area (namely, the size; the cup and cone shape) depends on the volume fraction of the primary α-phase in the quenched sample. However, the fracture surface changes considerably when the strain-induced β-α''-transformation takes place during tensile testing, resulting in the increase of alloy ductility. © 2017 Author(s).Russian Foundation for Basic Research, RFBR: 15-08-08299 АCouncil on grants of the President of the Russian Federation: MK-6311.2016.8The work was supported by the grant of the President of Russian Federation, No. MK-6311.2016.8, and RFBR grant No. 15-08-08299 А

    Can the anomalous X-ray pulsars be powered by accretion?

    Get PDF
    The nature of the 5-12 s "anomalous" X-ray pulsars remains a mystery. Among the models that have been proposed to explain the properties of AXPs, the most likely ones are: (1) isolated accreting neutron stars evolved from the Thorne-\.{Z}ytkow objects due to complete spiral-in during the common envelope evolution of high-mass X-ray binaries, and (2) magnetars, which are neutron stars with ultra-high (10141015\sim 10^{14}-10^{15} G) surface magnetic fields. We have critically examined the predicted change of neutron star's spin in the accretion model, and found that it is unable to account for the steady spin-down observed in AXPs. A simple analysis also shows that any accretion disk around an isolated neutron star has extremely limited lifetime. A more promising explanation for such objects is the magnetar model.Comment: 9 pages, accepted for publication in Ap

    Magnetically-dominated jets inside collapsing stars as a model for gamma-ray bursts and supernova explosions

    Full text link
    It has been suggested that magnetic fields play a dynamically-important role in core-collapse explosions of massive stars. In particular, they may be important in the collapsar scenario for gamma-ray bursts (GRB), where the central engine is a hyper-accreting black hole or a millisecond magnetar. The present paper is focussed on the magnetar scenario, with a specific emphasis on the interaction of the magnetar magnetosphere with the infalling stellar envelope. First, the ``Pulsar-in-a-Cavity'' problem is introduced as a paradigm for a magnetar inside a collapsing star. The basic set-up of this fundamental plasma-physics problem is described, outlining its main features, and simple estimates are derived for the evolution of the magnetic field. In the context of a collapsing star, it is proposed that, at first, the ram pressure of the infalling plasma acts to confine the magnetosphere, enabling a gradual build-up of the magnetic pressure. At some point, the growing magnetic pressure overtakes the (decreasing) ram pressure of the gas, resulting in a magnetically-driven explosion. The explosion should be highly anisotropic, as the hoop-stress of the toroidal field, confined by the surrounding stellar matter, collimates the magnetically-dominated outflow into two beamed magnetic-tower jets. This creates a clean narrow channel for the escape of energy from the central engine through the star, as required for GRBs. In addition, the delayed onset of the collimated-explosion phase can explain the production of large quantities of Nickel-56, as suggested by the GRB-Supernova connection. Finally, the prospects for numerical simulations of this scenario are discussed.Comment: Invited paper in the "Physics of Plasmas" (May 2007 special issue), based on an invited talk at the 48th Annual Meeting of the APS Division of Plasma Physics (Oct. 30 - Nov. 3, 2006, Philadelphia, PA); 24 pages, 7 figure

    Trans-sonic propeller stage

    Full text link
    We follow the approach used by Davies and Pringle (1981) and discuss the trans-sonic substage of the propeller regime. This substage is intermediate between the supersonic and subsonic propeller substages. In the trans-sonic regime an envelope around a magnetosphere of a neutron star passes through a kind of a reorganization process. The envelope in this regime consists of two parts. In the bottom one turbulent motions are subsonic. Then at some distance rsr_\mathrm{s} the turbulent velocity becomes equal to the sound velocity. During this substage the boundary rsr_\mathrm{s} propagates outwards till it reaches the outer boundary, and so the subsonic regime starts. We found that the trans-sonic substage is unstable, so the transition between supersonic and subsonic substages proceeds on the dynamical time scale. For realistic parameters this time is in the range from weeks to years.Comment: 8 pages with figures, submitted to Astron. Astroph. Transaction

    Recent progress on the accurate determination of the equation of state of neutron and nuclear matter

    Full text link
    The problem of accurately determining the equation of state of nuclear and neutron matter at density near and beyond saturation is still an open challenge. In this paper we will review the most recent progress made by means of Quantum Monte Carlo calculations, which are at present the only ab-inito method capable to treat a sufficiently large number of particles to give meaningful estimates depending only on the choice of the nucleon-nucleon interaction. In particular, we will discuss the introduction of density-dependent interactions, the study of the temperature dependence of the equation of state, and the possibility of accurately studying the effect of the onset of hyperons by developing an accurate hyperon-nucleon and hyperon-nucleon-nucleon interaction.Comment: 3 figures, 1 table, to appear in the Proceedings of "XIII Convegno di Cortona su Problemi di Fisica Nucleare Teorica", Cortona (Italy), April 6-8, 201

    Effect of Thermomechanical Treatment Parameters on Structure, Phase Composition and Mechanical Properties of Ti-3Al-5Mo-4.5V Titanium Alloy

    Full text link
    The structure, phase composition and mechanical properties of (α+β) - titanium alloy solution treated at 850 C, cold-rolled at the reduction ratio in the range of 0... 45%, followed by ageing at 450, 500, 550 C for 0.5, 1.5, 3 hours was studied using XRD, microindentation and tensile testing. The influence of strain level at cold rolling and time-temperature parameters of ageing on the formation of structure and phase composition of solution treated and water quenched Ti-3Al-5Mo-4.5V alloy was investigated and discussed in terms of tensile properties and microhardness. The parameters of low temperature thermomechanical treatment (LTMT) of the (α+β) - alloy were proposed to obtain a high-strength state. © Published under licence by IOP Publishing Ltd.This study was financially supported by the State Assignment, grant number 0836-2020-0020. The research equipment was purchased with the support from Act 211 of the Government of the Russian Federation, contract No. 02.A03.21.0006

    Nonlinear variations in axisymmetric accretion

    Full text link
    We subject the stationary solutions of inviscid and axially symmetric rotational accretion to a time-dependent radial perturbation, which includes nonlinearity to any arbitrary order. Regardless of the order of nonlinearity, the equation of the perturbation bears a form that is similar to the metric equation of an analogue acoustic black hole. We bring out the time dependence of the perturbation in the form of a Li\'enard system, by requiring the perturbation to be a standing wave under the second order of nonlinearity. We perform a dynamical systems analysis of the Li\'enard system to reveal a saddle point in real time, whose implication is that instabilities will develop in the accreting system when the perturbation is extended into the nonlinear regime. We also model the perturbation as a high-frequency travelling wave, and carry out a Wentzel-Kramers-Brillouin analysis, treating nonlinearity iteratively as a very feeble effect. Under this approach both the amplitude and the energy flux of the perturbation exhibit growth, with the acoustic horizon segregating the regions of stability and instability.Comment: 15 pages, ReVTeX. Substantially revised with respect to the previous version. One figure and a new section on travelling waves (Sec. VI) have been added. The bibliography has been revised. arXiv admin note: substantial text overlap with arXiv:1207.107

    On the Nature of Part Time Radio Pulsars

    Full text link
    The recent discovery of rotating radio transients and the quasi-periodicity of pulsar activity in the radio pulsar PSR B1931++24 has challenged the conventional theory of radio pulsar emission. Here we suggest that these phenomena could be due to the interaction between the neutron star magnetosphere and the surrounding debris disk. The pattern of pulsar emission depends on whether the disk can penetrate the light cylinder and efficiently quench the processes of particle production and acceleration inside the magnetospheric gap. A precessing disk may naturally account for the switch-on/off behavior in PSR B1931++24.Comment: 9 pages, accepted to ApJ
    corecore