225 research outputs found

    Fibre bundle formulation of nonrelativistic quantum mechanics. IV. Mixed states and evolution transport's curvature

    Full text link
    We propose a new systematic fibre bundle formulation of nonrelativistic quantum mechanics. The new form of the theory is equivalent to the usual one but it is in harmony with the modern trends in theoretical physics and potentially admits new generalizations in different directions. In it a pure state of some quantum system is described by a state section (along paths) of a (Hilbert) fibre bundle. It's evolution is determined through the bundle (analogue of the) Schr\"odinger equation. Now the dynamical variables and the density operator are described via bundle morphisms (along paths). The mentioned quantities are connected by a number of relations derived in this work. The present fourth part of this series is devoted mainly to the fibre bundle description of mixed quantum states. We show that to the conventional density operator there corresponds a unique density morphism (along paths) for which the corresponding equations of motion are derived. It is also investigated the bundle description of mixed quantum states in the different pictures of motion. We calculate the curvature of the evolution transport and prove that it is curvature free iff the values of the Hamiltonian operator at different moments commute.Comment: 14 standard (11pt, A4) LaTeX 2e pages. The packages AMS-LaTeX and amsfonts are required. Minor style changes, a problem with the bibliography is corrected. Continuation of quant-ph/9803083, quant-ph/9803084, quant-ph/9804062 and quant-ph/9806046. For continuation of the series and related papers, view http://www.inrne.bas.bg/mathmod/bozhome

    Fibre bundle formulation of nonrelativistic quantum mechanics. 0. Preliminary considerations: Quantum mechanics from a geometric-observer's viewpoint

    Full text link
    We propose a version of the non-relativistic quantum mechanics in which the pure states of a quantum system are described as sections of a Hilbert (generally infinitely-dimensional) fibre bundle over the space-time. There evolution is governed via (a kind of) a parallel transport in this bundle. Some problems concerning observables are considered. There are derived the equations of motion for the state sections and observables. We show that up to a constant the matrix of the coefficients of the evolution operator (transport) coincides with the matrix of the Hamiltonian of the investigated quantum system.Comment: 15 standard LaTeX 2e (11pt, A4) pages. The packages AMS-LaTeX and amsfonts are require

    Comments on: "Quantum mechanics as a gauge theory of metaplectic spinor fields" by M. Reuter [Int.J.Mod.Phys. A13 (1998), 3835-3884; hep-th/9804036]

    Full text link
    We point out how some mathematically incorrect passages in the paper of M. Reuter can be formulated in a rigorous way. The fibre bundle approach to quantum mechanics developed in quant-ph/9803083, quant-ph/9803084, quant-ph/9804062, quant-ph/9806046, quant-ph/9901039, and quant-ph/9902068 is compared with the one contained in loc. cit.Comment: 11 standard (11pt, A4) LaTeX 2e pages. The packages AMS-LaTeX and amsfonts are required. For related papers, view http://www.inrne.bas.bg/mathmod/bozhome

    Fibre bundle formulation of nonrelativistic quantum mechanics. III. Pictures and integrals of motion

    Get PDF
    We propose a new systematic fibre bundle formulation of nonrelativistic quantum mechanics. The new form of the theory is equivalent to the usual one but it is in harmony with the modern trends in theoretical physics and potentially admits new generalizations in different directions. In it a pure state of some quantum system is described by a state section (along paths) of a (Hilbert) fibre bundle. It's evolution is determined through the bundle (analogue of the) Schr\"odinger equation. Now the dynamical variables and the density operator are described via bundle morphisms (along paths). The mentioned quantities are connected by a number of relations derived in this work. In this third part of our series we investigate the bundle analogues of the conventional pictures of motion. In particular, there are found the state sections and bundle morphisms corresponding to state vectors and observables respectively. The equations of motion for these quantities are derived too. Using the results obtained, we consider from the bundle view-point problems concerning the integrals of motion. An invariant (bundle) necessary and sufficient conditions for a dynamical variable to be an integral of motion are found.Comment: 19 standard (11pt, A4) LaTeX 2e pages. The packages AMS-LaTeX and amsfonts are required. New references and comments are added. Minor style chages. Continuation of quant-ph/9803083, quant-ph/9803084 and quant-ph/9804062. For continuation of the series view http://www.inrne.bas.bg/mathmod/bozhome

    Fibre bundle formulation of relativistic quantum mechanics. I. Time-dependent approach

    Full text link
    We propose a new fibre bundle formulation of the mathematical base of relativistic quantum mechanics. At the present stage the bundle form of the theory is equivalent to its conventional one, but it admits new types of generalizations in different directions. In the present first part of our investigation we consider the time-dependent or Hamiltonian approach to bundle description of relativistic quantum mechanics. In it the wavefunctions are replaced by (state) liftings of paths or sections along paths of a suitably chosen vector bundle over space-time whose (standard) fibre is the space of the wavefunctions. Now the quantum evolution is described as a linear transportation (by means of the evolution transport along paths in the space-time) of the state liftings/sections in the (total) bundle space. The equations of these transportations turn to be the bundle versions of the corresponding relativistic wave equations.Comment: 16 standard LaTeX pages. The packages AMS-LaTeX and amsfonts are required. The paper continuous the application of fibre bundle formalism to quantum physics began in the series of works quant-ph/9803083, quant-ph/9803084, quant-ph/9804062, quant-ph/9806046, quant-ph/9901039, quant-ph/9902068, and quant-ph/0004041. For related papers, view http://theo.inrne.bas.bg/~bozho

    Normal frames and the validity of the equivalence principle. III. The case along smooth maps with separable points of self-intersection

    Get PDF
    The equivalence principle is treated on a mathematically rigorous base on sufficiently general subsets of a differentiable manifold. This is carried out using the basis of derivations of the tensor algebra over that manifold. Necessary and/or sufficient conditions of existence, uniqueness, and holonomicity of these bases in which the components of the derivations of the tensor algebra over it vanish on these subsets, are studied. The linear connections are considered in this context. It is shown that the equivalence principle is identically valid at any point, and along any path, in every gravitational theory based on linear connections. On higher dimensional submanifolds it may be valid only in certain exceptional cases.Comment: 15 standard LaTeX 2e (11pt, A4) pages. The package amsfonts is require

    Auto-parallel equation as Euler-Lagrange's equation in spaces with affine connections and metrics

    Full text link
    The auto-parallel equation over spaces with affine connections and metrics is considered as a result of the application of the method of Lagrangians with covariant derivatives (MLCD) on a given Lagrangian density.Comment: 19 pages, LaTe

    Normal frames and the validity of the equivalence principle

    Get PDF
    We investigate the validity of the equivalence principle along paths in gravitational theories based on derivations of the tensor algebra over a differentiable manifold. We prove the existence of local bases, called normal, in which the components of the derivations vanish along arbitrary paths. All such bases are explicitly described. The holonomicity of the normal bases is considered. The results obtained are applied to the important case of linear connections and their relationship with the equivalence principle is described. In particular, any gravitational theory based on tensor derivations which obeys the equivalence principle along all paths, must be based on a linear connection.Comment: 14 pages, LaTeX 2e, the package amsfonts is neede

    Flows and particles with shear-free and expansion-free velocities in (L^-_n,g)- and Weyl's spaces

    Full text link
    Conditions for the existence of flows with non-null shear-free and expansion-free velocities in spaces with affine connections and metrics are found. On their basis, generalized Weyl's spaces with shear-free and expansion-free conformal Killing vectors as velocity's vectors of spinless test particles moving in a Weyl's space are considered. The necessary and sufficient conditions are found under which a free spinless test particle could move in spaces with affine connections and metrics on a curve described by means of an auto-parallel equation. In Weyl's spaces with Weyl's covector, constructed by the use of a dilaton field, the dilaton field appears as a scaling factor for the rest mass density of the test particle. PACS numbers: 02.40.Ky, 04.20.Cv, 04.50.+h, 04.90.+eComment: 20 pages, LaTeX, to appear in Classical and Quantum Gravity. arXiv admin note: substantial text overlap with arXiv:gr-qc/001104

    Frames of reference in spaces with affine connections and metrics

    Full text link
    A generalized definition of a frame of reference in spaces with affine connections and metrics is proposed based on the set of the following differential-geometric objects: (a) a non-null (non-isotropic) vector field, (b) the orthogonal to the vector field sub space, (c) an affine connection and the related to it covariant differential operator determining a transport along the given non-null vector filed. On the grounds of this definition other definitions related to the notions of accelerated, inertial, proper accelerated and proper inertial frames of reference are introduced and applied to some mathematical models for the space-time. The auto-parallel equation is obtained as an Euler-Lagrange's equation. Einstein's theory of gravitation appears as a theory for determination of a special frame of reference (with the gravitational force as inertial force) by means of the metrics and the characteristics of a material distribution. PACS numbers: 0490, 0450, 1210G, 0240VComment: 17 pages, LaTeX 2
    corecore