567 research outputs found
Reionization: Characteristic Scales, Topology and Observability
Recently the numerical simulations of the process of reionization of the
universe at z>6 have made a qualitative leap forward, reaching sufficient sizes
and dynamic range to determine the characteristic scales of this process. This
allowed making the first realistic predictions for a variety of observational
signatures. We discuss recent results from large-scale radiative transfer and
structure formation simulations on the observability of high-redshift Ly-alpha
sources. We also briefly discuss the dependence of the characteristic scales
and topology of the ionized and neutral patches on the reionization parameters.Comment: 4 pages, 5 figures (4 in color), to appear in Astronomy and Space
Science special issue "Space Astronomy: The UV window to the Universe",
proceedings of 1st NUVA Conference ``Space Astronomy: The UV window to the
Universe'' in El Escorial (Spain
On upscaling heat conductivity for a class of industrial problems
Calculating effective heat conductivity for a class of industrial problems is discussed. The considered composite materials are glass and metal foams, fibrous materials, and the like, used in isolation or in advanced heat exchangers. These materials are characterized by a very complex internal structure, by low volume fraction of the higher conductive material (glass or metal), and by a large volume fraction of the air. The homogenization theory (when applicable), allows to calculate the effective heat conductivity of composite media by postprocessing the solution of special cell problems for representative elementary volumes (REV). Different formulations of such cell problems are considered and compared here. Furthermore, the size of the REV is studied numerically for some typical materials. Fast algorithms for solving the cell problems for this class of problems, are presented and discussed
Frames of reference in spaces with affine connections and metrics
A generalized definition of a frame of reference in spaces with affine
connections and metrics is proposed based on the set of the following
differential-geometric objects:
(a) a non-null (non-isotropic) vector field,
(b) the orthogonal to the vector field sub space,
(c) an affine connection and the related to it covariant differential
operator determining a transport along the given non-null vector filed.
On the grounds of this definition other definitions related to the notions of
accelerated, inertial, proper accelerated and proper inertial frames of
reference are introduced and applied to some mathematical models for the
space-time. The auto-parallel equation is obtained as an Euler-Lagrange's
equation. Einstein's theory of gravitation appears as a theory for
determination of a special frame of reference (with the gravitational force as
inertial force) by means of the metrics and the characteristics of a material
distribution.
PACS numbers: 0490, 0450, 1210G, 0240VComment: 17 pages, LaTeX 2
On metric-connection compatibility and the signature change of space-time
We discuss and investigate the problem of existence of metric-compatible
linear connections for a given space-time metric which is, generally, assumed
to be semi-pseudo-Riemannian. We prove that under sufficiently general
conditions such connections exist iff the rank and signature of the metric are
constant. On this base we analyze possible changes of the space-time signature.Comment: 18 standard LaTeX 2e pages. The packages AMS-LaTeX and amsfonts are
require
Investigation on the Performance of a Compact Three-Fluid Combined Membrane Contactor for Dehumidification in Electric Vehicles
In this paper, the performance of a compact Three-Fluid Combined Membrane Contactor (3F-CMC) is investigated using Computational Fluid Dynamics (CFD), supported and validated with a good agreement by an experimental campaign made on a fully working prototype. This internally-cooled membrane contactor is the core component of a hybrid air conditioning system for electric vehicles (EVs) developed in a successful H2020 project called XERIC. In the adopted numerical approach, the conjugate heat and mass transfer inside the 3F-CMC is described by non-isothermal incompressible flows and vapor transport through a PTFE hydrophobic membrane. The sensitivity of the 3F-CMC performance to air/desiccant flow rates, temperature, humidity, and desiccant concentration is analyzed numerically through the validated CFD codes. According to this study, the moisture removal increases by the inlet humidity ratio, nearly linearly. Under the considered conditions (where the inlet air temperature is 26.2C), when the inlet relative humidity (RH) is 75% the moisture removal is about 450% higher than the case RH = 37%, while the absorption effectiveness declines about 45%. Furthermore, this study shows that the amount of absorbed vapor flux rises by increasing the airflow rate; on the other hand, the higher the airflow rate, the lower is the overall absorption efficiency of the 3F-CMC. This investigation gives important suggestions on how to properly operate a 3F-CMC in order to achieve the requested performance, especially in hot and humid climates
Cell-element simulations to optimize the performance of osmotic processes in porous membranes
We present a new module of the software tool PoreChem for 3D simulations of osmotic processes at the cell-element scale. We consider the most general fully coupled model (see e.g., Sagiv and Semiat (2011)) in 3D to evaluate the impact on the membrane performance of both internal and external concentration polarization, which occurs in a cell-element for different operational conditions. The model consists of the Navier–Stokes–Brinkman system to describe the free fluid flow and the flow within the membrane with selective and support layers, a convection–diffusion equation to describe the solute transport, and nonlinear interface conditions to fully couple these equations. First, we briefly describe the mathematical model and discuss the discretization of the continuous model, the iterative solution, and the software implementation. Then, we present the analytical and numerical validation of the simulation tool. Next, we perform and discuss numerical simulations for a case study. The case study concerns the design of a cell element for the forward osmosis experiments. Using the developed software tool we qualitatively and quantitatively investigate the performance of a cell element that we designed for laboratory experiments of forward osmosis, and discuss the differences between the numerical solutions obtained with the full 3D and reduced 2D models. Finally, we demonstrate how the software enables investigating membrane heterogeneities
Model Reduction for Multiscale Lithium-Ion Battery Simulation
In this contribution we are concerned with efficient model reduction for
multiscale problems arising in lithium-ion battery modeling with spatially
resolved porous electrodes. We present new results on the application of the
reduced basis method to the resulting instationary 3D battery model that
involves strong non-linearities due to Buttler-Volmer kinetics. Empirical
operator interpolation is used to efficiently deal with this issue.
Furthermore, we present the localized reduced basis multiscale method for
parabolic problems applied to a thermal model of batteries with resolved porous
electrodes. Numerical experiments are given that demonstrate the reduction
capabilities of the presented approaches for these real world applications
3D morphology design for forward osmosis
We propose a multi-scale simulation approach to model forward osmosis (FO) processes using substrates with layered homogeneous morphology. This approach accounts not only for FO setup but also for detailed microstructure of the substrate using the digitally reconstructed morphology. We fabricate a highly porous block copolymer membrane, which has not been explored for FO heretofore, and use it as the substrate for interfacial polymerization. The substrate has three sub-layers, namely a top layer, a sponge-like middle layer, and a nonwoven fabric layer. We generate a digital microstructure for each layer, and verify them with experimental measurements. The permeability and effective diffusivity of each layer are computed based on their virtual microstructures and used for FO operation in cross-flow setups at the macro-scale. The proposed simulation approach predicts accurately the FO experimental data
Spherical collapse with dark energy
I discuss the work of Maor and Lahav [1], in which the inclusion of dark
energy into the spherical collapse formalism is reviewed. Adopting a
phenomenological approach, I consider the consequences of - a) allowing the
dark energy to cluster, and, b) including the dark energy in the virialization
process. Both of these issues affect the final state of the system in a
fundamental way. The results suggest a potentially differentiating signature
between a true cosmological constant and a dynamic form of dark energy. This
signature is unique in the sense that it does not depend on a measurement of
the value of the equation of state of dark energy.Comment: To appear in the proceedings of the ``Peyresq Physics 10" Workshop,
19 - 24 June 2005, Peyresq, Franc
- …