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Abstract 

We propose a multi-scale simulation approach to model forward osmosis (FO) 

processes using substrates with layered homogeneous morphology. This approach 

accounts not only for FO setup but also for detailed microstructure of the substrate 

using the digitally reconstructed morphology. We fabricate a highly porous block 

copolymer membrane, which has not been explored for FO heretofore, and use it as the 

substrate for interfacial polymerization. The substrate has three sub-layers, namely a 

top layer, a sponge-like middle layer, and a nonwoven fabric layer. We generate a 

digital microstructure for each layer, and verify them with experimental measurements. 
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The permeability and effective diffusivity of each layer are computed based on their 

virtual microstructures and used for FO operation in cross-flow setups at the macro 

scale. The proposed simulation approach predicts accurately the FO experimental data. 

Keywords: multi-scale simulation, digital membrane microstructure, concentration 

polarization, block copolymer substrate 

 

 

Nomenclature 

  pure water permeance 

   mass enhancement 

  density of water 

  effective membrane area 

   operational time for collecting water 

   applied pressure or pressure drop 

  salt rejection 

   sodium chloride concentration of the permeate solution 

   sodium chloride concentration of the feed solution 

  salt permeability coefficient 

   osmotic pressure difference across the membrane 

   water flux in FO test 

   salt flux in FO test 
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   sodium chloride concentration of the feed solution at the beginning 

   sodium chloride concentration of the feed solution at the end 

   volume of the feed solution at the beginning 

   volume of the feed solution at the end 

  velocity 

  viscosity 

  pressure 

  Darcy permeability 

   Darcy permeability of the selective layer 

  flow rate 

  thickness of the microstructure 

  molecular diffusion 

     effective diffusivity 

  concentration 

   concentration drop 

     effective viscosity 

  normal unit vector to the selective layer 

  thickness of the selective layer 

  osmotic pressure 

 

 

1 Introduction 
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     Water desalination by reverse osmosis is an essential technology due to the global 

water shortage in large parts of the world. Apart from seawater desalination, water 

reuse is needed to meet the water demand, opening opportunities for less established 

membrane technologies [1, 2], such as forward osmosis [3-6], nanofiltration [7-9], and 

membrane distillation [10-13].  

     Forward osmosis (FO) is an emerging membrane technique for water treatment [14], 

food processing [15], pharmaceutical industry [16], and other applications [17]. Typically, 

a thin-film composite membrane for FO is constituted by three layers [18]: a thin 

selective polyamide layer (dense top layer), a porous polymeric substrate (middle 

asymmetric layer with fine pores), and a fabric support layer (bottom layer with bigger 

pores and higher porosity). An important challenge for the development of FO 

membranes is the fabrication of polymer substrates, for deposition of the thin selective 

layer. These substrates should cause minimum resistance to the water flux, while 

minimizing the solute flux and the internal concentration polarization (ICP) during 

operation, as well as provide high mechanical stability. While the external concentration 

polarization is related to the solute concentration differences close to the membrane 

surface and the bulk of the solution, developed during operation, ICP occurs particularly 

in the membrane substrate. A concentration gradient is internally built, disturbing the 

osmotic pressure gradient, which is the main driving force for water transport through 

the membrane in the FO process. 

     Different materials have been investigated for FO substrates, such as polysulfone 

[19-21], polyethersulfone [22-24], polyacrylonitrile [25, 26], polyimide [27], and 

polytriazole-co-polyoxadiazole [28]. The nature of the chosen polymer controls the 



 5 

hydrophilicity, which affects the water flow. Morphology minimized the internal 

concentration polarization, even more than the substrate chemical composition. The 

experimental optimization of membrane morphology for FO has been topic of 

investigation of very good groups in the field, using different approaches [29-31]. The 

most common morphologies of asymmetric membranes, sponge- and finger-like have 

been compared in [29]. Another approach is to use substrates constituted by 

electrospun fibers [24, 32]. High porosity contributes to low ICP and minimizes any 

detrimental effect on water flow. Large and open pores are preferred on one side of the 

substrate to minimize the concentration gradient. Small pores on the other side of 

substrate surface used for the deposition of the thin selective layer are preferred to 

guarantee its mechanical stability. The high substrate surface porosity is important to 

fully use the surface area of the thin selective layer, without adding any barrier for the 

continuous water flow through the multilayer membrane. A new class of porous 

asymmetric membranes, with exceptionally high pore density and narrow pore size 

distribution in the scale of ten to a few hundreds nm [33-35], is based on block 

copolymers. These membranes are prepared by taking advantage of the block 

copolymer capability of self-assembly in various patterns in solution. By combining self-

assembly and the classical method of phase inversion by immersion in a non-solvent 

bath, highly ordered and highly porous membranes are obtained. Our group has been 

investigating this class of membranes for years, exploring it for ultra- and nanofiltration 

[36-39]. Challenging separations of proteins with similar sizes have been demonstrated 

under exceptional water permeance compared to other membranes of similar molecular 

weight cut-off [40]. The unique characteristics of block copolymer membranes suggest 
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that they could also be beneficial for FO application [41]. However, there is still no report 

evaluating block copolymer membranes as FO substrates. Hence, in this work block 

copolymer membranes are experimentally evaluated as substrates for FO membranes 

compared to polyethersulfone substrates, tested in the same conditions. For the 

preparation of FO membranes we deposit thin selective polyamide layers via interfacial 

polymerization (IP) on the top of isoporous block copolymer membranes with unique 

pore patterns. 

Simulations of FO membrane performance 

     In this work, we exploit the regular surface pore morphology and high porosity 

offered by block copolymer membranes to demonstrate a new simulation approach. 

Using 3D simulations of membrane microstructure and experimental validation, we 

recently showed how the membrane morphology affects the water flux in ultrafiltration 

experiments [42]. Here we use analogous 3D digital microstructures and extend the 

simulation approach to predict the performance of FO membranes. 

     By changing the polymer, solvent, and other preparation conditions, innumerous 

morphologies can be experimentally obtained. Simulations that account for membrane 

microstructure can be helpful to narrow the variety of morphology patterns with most 

promising possibilities for success. In most reports experimental developments and 

simulations are treated separately. Only a few reports use 3D simulations (see detailed 

discussion below) and to the best of our knowledge none of the previous reports use 

simulations for 3D digital reconstruction of microscopic morphology coupled with the 

fluid flow and solute transport in the realistic cross-flow FO setup. Our approach 

properly predicts the performance of a proposed morphology. 
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     Due to the nature of the FO processes, solute transport inside the membrane is 

diffusive and not convective. Therefore, effective diffusivity, which is the diffusivity of the 

solute inside a porous medium, defines the internal concentration polarization and, as a 

result, the membrane performance. The effective diffusivity has been previously studied 

using different modeling approaches. One of the approaches was proposed by Lee et al. 

[43] for pressure retarded osmosis and then extended by Loeb et al. [44] for forward 

osmosis. In these studies a macroscopic parameter, the membrane structural 

parameter, was introduced. The structural parameter lumps together several 

characteristics of the membrane such as thickness, tortuosity, and porosity. This 

structural parameter essentially represents membrane morphology at the macro scale. 

Later Tang et al. [45] and Park et al. [46] developed further this concept. However, the 

parameter in this method is fit using FO experiments assuming a certain approximation, 

since it cannot be computed directly. Moreover, the structural parameter lumps different 

characteristics of the support layer of a membrane into a single parameter, which 

restricts the mathematical model in case of asymmetric FO membranes and can 

introduce additional error into the simulation results. Alternatively, Ramon et al. in [47, 

48] employed 2D and 3D micro-scale simulations to investigate how pore size and 

porosity of the support layer as well as thickness and roughness of the selective layer 

impact permeability and local distribution of solute and water fluxes. The mathematical 

model used in [47, 48] accounts only for diffusion inside the membrane without water 

flow while the effects of the external concentration polarization are modeled using a 

simplified geometrical representation of the membrane microstructure. The third 

approach to investigate microstructure of FO membranes was employed by Li et al. [49]. 



 8 

The authors used pore-network modeling to study the influence of microstructure of 

porous support on the internal concentration polarization, while the external 

concentration polarization was neglected and the microscopic morphology of the 

support was idealized. In general, most of the works concerned with the modeling of FO 

processes use an approximation of the effective diffusivity by molecular diffusion scaled 

with porosity of the membrane [45, 46, 50]. Since the diffusion dominates inside the FO 

membrane, a more accurate approximation of the effective diffusivity of membrane is 

needed. 

     In this study, we propose a multi-scale approach to model FO membranes with 

layered homogeneous morphology. Our approach accounts for realistic membrane 

microstructure and for full FO process in a cross-flow setup. First, at the micro scale we 

generate the digital membrane morphology for the block copolymer substrate and 

compute water permeance and effective diffusivity using the software tool GeoDict [51]. 

Since the membrane is asymmetric, the micro-scale simulations are performed for each 

layer (parallel to the surface), which composes the membrane support. Each layer is 

assumed to be homogeneous along the direction parallel to the membrane surface, 

without macroscopic heterogeneities. Then, using the software tool PoreChem [52], we 

perform FO simulations at the macro scale using parameters of the membrane obtained 

from the micro scale. The simulation results are verified using FO experiments 

performed with newly developed block copolymer membranes coated by interfacial 

polymerization. 

2 Materials and methods 
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2.1 Materials 

     Poly(styrene-b-4-vinyl pyridine) block copolymers (PS-b-P4VP, Mn=188000-b-64000, 

Mw/Mn=1.16) were purchased from Polymer Source, Inc. Polyethersulfone Ultrason® E 

6020 P (PES, Mw=75 000 g/mol, Mw/Mn=3.4) was obtained from BASF. Polyester 

nonwoven was purchased from Sojitz Europe plc (made by Hirose Paper). Polyester 

Woven Mesh WS0050-60P was purchased from Industrial Netting, Inc. Filter papers 

were purchased from GE Whatman. Trimesoyl chloride (TMC) and m-phenylenediamine 

(MPD), N, N-dimethylformamide (DMF), acetone, 1,4-dioxane (DIOX) and hexane were 

purchased from Sigma-Aldrich Corporation and used as received. We used Milli-Q 

ultrapure water for all the tests and conducted all experiments at room temperature of 

approximately 22°C except further instructions. 

     The FO membranes in this work were formed by three layers: (i) a rough support 

with open porosity, constituted by a polyester woven or nonwoven; (ii) an asymmetric 

porous substrate, which was made of PS-b-P4VP or PES and (iii) a polyamide layer 

prepared by interfacial polymerization. 

2.2 Substrate fabrication 

     The asymmetric porous substrate was prepared by phase inversion: polymer 

solution casting followed by immersion in water. As mentioned above the two polymers 

used for the substrate were PES and PS-b-P4VP. The PES casting solution contained 

18 wt% polymer and 82 wt% DMF. The PS-b-P4VP solution had 18 wt% polymer, 16 wt% 

acetone, 24 wt% DMF and 42 wt% DIOX. The polymer solutions were stirred overnight 

at room temperature. Before casting, a nonwoven was firstly fixed on a clean glass plate 
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using adhesive tape. Then the solution was poured onto the nonwoven, and spread with 

a casting knife with a gate gap of 250 µm, excluding the nonwoven thickness. For the 

block copolymer substrate a solvent evaporation time of 10 seconds was allowed before 

the immersion into the water bath. The obtained asymmetric porous substrates were 

stored in water before further characterizations or modifications. 

2.3 Selective layer fabrication via interfacial polymerization (IP) 

     The selective layers of the FO membranes were prepared by the interfacial 

polymerization between MPD and TMC monomers on PS-b-P4VP and PES porous 

substrates. They are here referred as PS-b-P4VP/IP and PES/IP membranes, 

respectively. Let us briefly explain the fabrication process of the elective layer. First, the 

substrate was immersed in 2 wt% MPD water solution for 2 minutes; then, the solution 

was discarded, and the remaining solution droplets on the membrane surface were 

removed with a filter paper. Later, a frame was used to assemble the membrane so that 

only the top surface of the substrate was exposed, and 0.1 wt% TMC in hexane solution 

was poured into the frame to react with MPD on the substrate surface for 1 minute. After 

draining the TMC solution, the membrane was left in the air for 1 minute more and 

finally the membrane was rinsed with water to wash out the unreacted monomers, and 

stored in water for further tests. 

2.4 Membrane characterizations 

2.4.1 Field emission scanning electron microscopy (FESEM) 

     The membrane morphology was imaged using Nova Nano 630 or Quanta 600 FEI 

field emission scanning electron microscopes. The samples were freeze-dried, and 
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subsequently coated with 3 nm iridium using Q150T sputter coater (Quorum 

Technologies). For cross section samples, the membranes after freeze-drying were 

fractured in liquid nitrogen. 

2.4.2 Atomic force microscopy (AFM) 

     The membrane surface roughness was characterized on an Agilent 5400 Scanning 

Probe Microscope (Agilent Technologies, Inc.). The freeze-dried samples with areas of 

3 μm × 3 μm were scanned using tapping mode. 

2.4.3 Contact angle measurement 

     The contact angle (θ) was measured on a Krüss Easy Drop (Krüss GmbH) 

equipment. A water droplet with a constant volume of 1µL was dropped onto the 

membrane surface in the static mode, and then an image was taken to calculate the 

contact angle. 

2.4.4 Permeance of the substrates 

     The water permeance of the substrate was measured in the dead-end filtration mode. 

The measurement was conducted in an Amicon Stirred Cell Model 8010 connected to a 

large deionized water tank with an effective membrane area of 4.1 cm2 under a trans-

membrane pressure of 1 bar. Pure water permeance   was calculated using the 

following equation 

     
  

             
.  (1) 

Here,    is the mass enhancement in the period of   ;   is the density of water;   is the 

effective membrane area;    is the applied pressure. 
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     The gas transport property of the nonwoven fabric support was measured using the 

setup introduced in [53]. The thickness was estimated by the thickness gauge. Finally, 

the nonwoven fabric’s permeability was calculated by Darcy’s law. 

2.4.5 Porosity of the substrates 

     The porosity of the polymeric substrate was measured using the dry-wet method, 

and more detailed is available in our previous work [42]. Additionally, the nonwoven 

fabric’s porosity was measured by the mercury porosimetry using the standard method. 

2.4.6 Mass transport characteristics of membranes with IP layer 

     The water permeance of membranes coated by interfacial polymerization was tested 

in a dead-end cell, constructed at KAUST, suitable for high pressure experiments (8 bar 

in these experiments), using deionized water as feed and an effective membrane area 

of 3.8 cm2. The water permeance was calculated based on Equation (1). 

     The salt rejection of membranes coated with the IP layer was measured using a 

similar method with 2000 ppm sodium chloride solution as feed, under a stirring speed 

of 600 rpm. After filtration, both feed and permeate solutions conductivity values were 

measured using a conductivity meter Cond 3210 (WTW GmbH, Germany). We 

calculate the salt rejection   using Equation (2). 

       
  

  
     ,  (2) 

where    and    are the sodium chloride concentrations of the permeate and the feed 

solutions, respectively, based on the measured conductivity values.  

     The salt permeability coefficient   was determined by Equation (3) according to the 

solution-diffusion theory [54]. 
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  (     )
,  (3) 

where    and    are the pressure difference and osmotic pressure difference across 

the membrane, respectively. 

2.5 FO performance tests 

     We used a lab-scale FO setup to test the performance of the FO membranes 

including the water and salt fluxes [55]. The dimensions of the FO cell (plate-and-frame) 

were 2 cm in length, 1 cm in width, and 1 mm in height. All tests were operated using 

counter-current cross flow with the flow rate of 200 mL/min for each channel. The feed 

and draw solution reservoirs had a capacity of 900 mL. The membranes were tested in 

FO mode and PRO mode. The FO mode is characterized by the membrane’s selective 

layer facing the feed solution; in the PRO mode, the selective layer faces the draw 

solution. In the performed tests, the feed was water; the draw solution contained 2 M 

sodium chloride. Due to the osmotic pressure difference, water flows from the feed to 

the draw solution side. The water flux was recorded using a computer connected to a 

balance, which reflected the weight change of the draw solution. The salt flux was 

monitored by a conductivity meter immersed in the feed solution. The water and salt flux 

were calculated using Equations (4) and (5), respectively. 

      
  

          
,  (4) 

where    is the water flux across the membrane;    is the water (mass) collected within 

the period   ;   is the density of water; and   is the effective membrane area. 

      
           

      
,  (5) 
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where   is the salt flux across the membrane;    and    are the sodium chloride 

concentration of the feed solution at the beginning and the end of the measurement, 

respectively, based on the measured conductivity values;    and    are the volumes of 

the feed solution at the beginning and the end of measurement, respectively. The 

reported data, including water and salt fluxes, were average values measured at 30 

minutes after the experiment started.    

3 Multi-scale models for FO 

3.1 Micro-scale modeling 

     Based on available characterization of the membrane, such as FESEM images, porosity, 

and pore size distribution, we virtually generate the membrane microstructure applying different 

algorithms available in GeoDict (for more details see [51]). Then, we compute the intrinsic 

permeability and effective diffusivity for the digital microstructure of each layer. The permeability 

for a single layer or cumulative for several layers is compared with the experimental data to 

verify the obtained microstructure. 

     To compute the water permeability, we solve the Stokes system of equations, which 

reads 

                     ;  (6) 

where   is the velocity,   is the viscosity,   is the pressure. The system of Equation (6) 

is supplemented by periodic boundary conditions in the direction tangential to the flow 

and either periodic boundary conditions with a constant pressure drop or inflow velocity 

and outflow pressure boundary conditions in the direction of the flow. The macroscopic 

Darcy vertical permeability is computed using volume averaged quantities as follows 
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;  (7) 

where   is the permeability in the chosen flow direction;   is the flow rate;   is the 

thickness of the microstructure;   is the area;    is the pressure drop. 

     The effective diffusivity      is a macroscopic quantity introduced to describe 

diffusion through the pore space of porous media. We compute the effective diffusivity 

for the given digital microstructure using mathematical modeling [51]. The diffusion in 

the pores is modeled by the Laplace equation 

      ;  (8) 

where   is the molecular diffusion,   is the concentration. We use Neumann boundary 

conditions on the pores walls, which are solid boundaries. The Neumann boundary 

conditions guarantee the gradient of the concentration in the normal direction to the 

solid boundaries to be zero and, therefore, zero solute flux though the solid boundaries. 

We use periodic boundary conditions in the direction tangential to the concentration 

gradient. The concentration gradient itself is modeled by a concentration difference on 

the two opposite faces of the structure. The macroscopic effective diffusivity      is 

computed at a post-processing step 

     
   

   
; (9) 

where    is the total solute flux in the direction from the draw solution to feed solution, 

   is the concentration drop. 

3.2 Macro-scale modeling 

     After we define the permeability K and the effective diffusivity      of the support 

layer, we use these parameters as input data for the forward osmosis cross-flow model. 
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To model the fluid flow in the cross-flow channels and in the membrane we use the 

steady Navier-Stokes-Brinkman system of equations 

   (      )  (    )    
       , (10) 

     ; (11) 

where      is the effective viscosity.   is the permeability in the porous medium and 

      in the cross-flow channels. In general, the permeability is a tensor quantity, but 

here we consider a scalar quantity instead. This is enough for FO modeling as the 

membrane is dense and the flow inside the membrane occurs mainly in one direction. 

The solute transport is modeled using the following convection-diffusion equation 

   (   )    (  )   . (12) 

Here   is the molecular diffusion inside the cross-flow channels and        inside the 

membrane. The selective layer is modeled using the following interfacial conditions 

    
  
   
(     ( )), (13) 

       ; (14) 

where    is the solute flux through the selective layer,        is the water flux across 

the selective layer,   is the normal unit vector to the selective layer,   is the thickness of 

the selective layer,    is the water permeability of the selective layer,   is the solute 

permeability of the selective layer, operator   defines the drop of a quantity across the 

selective layer,   is the osmotic pressure as a function of the concentration. 

4 Results and discussion 
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4.1 Characteristics of substrates 

     Both PS-b-P4VP and PES substrates were cast onto a 161 µm thick nonwoven 

fabric layer using 18 wt% polymer solution without any additive by nonsolvent induced 

phase inversion. PES was chosen for the comparison because it is one of the most 

used polymer for asymmetric porous membranes and can be seen as a standard 

system. The hydrophilicities of PS-b-P4VP and PES substrates are similar. As can be 

seen in Table 1, the contact angles of PS-b-P4VP and PES substrates are 72° and 67°, 

respectively. However, the two substrates strongly differ in morphology. The PS-b-P4VP 

substrate was prepared by self-assembly to form a highly ordered surface pore 

distribution with pore size around 40 nm as shown in Figure 1(a). Compared to the PES 

substrate surface (Figure 1(b)), the PS-b-P4VP substrate surface has a more uniform 

pore distribution and higher pore density. The cross sectional images in Figure 1 show 

that the PS-b-P4VP substrate exhibits a highly porous sponge-like structure with well-

connected pores, while the PES substrate used here contains finger-like macrovoids. 

The large surface pore size, high porosity, and well inter-connected structure make the 

PS-b-P4VP substrate favorable for water transport. Hence, the PS-b-P4VP substrate 

has much higher pure water permeance measured as being 659 L m-2 h-1 bar-1, 

compared to the PES substrate, for which the pure water permeance was 199 L m-2 h-1 

bar-1 (Table 1). The surface topologies of the two substrates were confirmed by AFM as 

shown in Figure 2. The surface roughness of the substrates is presented as the root 

mean square height Sq and the arithmetic mean height Sa. PS-b-P4VP and PES 

substrates exhibit smooth surfaces with the surface roughness of approximately 5 nm. 

The AFM results clearly confirm that the PS-b-P4VP substrate has larger surface pore 
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size and higher surface porosity. The results suggest that the PS-b-P4VP substrate 

exhibits more favorable properties to be used as a support for the deposition of a thin 

polyamide layer to form a high performance FO membrane. 

 

Table 1. Pure water permeance and contact angle of porous substrates 

Substrate 
Pure water permeance 

(L m-2 h-1 bar-1) 
Contact angle (°) 

PS-b-P4VP  659 ± 1 72 ± 3 

PES 199 ± 12 67 ± 2 
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Figure 1. FESEM images of surfaces and cross sections of (a) PS-b-P4VP and (b) PES 

substrates. 

500 nm 

 50µm 

Cross sections 

Surfaces                                                     

25 µm 
(a) PS-b-P4VP substrate (b) PES substrate 

25 µm 
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Figure 2. AFM images of (a) PS-b-P4VP and (b) PES substrates. Sa and Sq are the 

average roughness and root mean square roughness. 

 

4.2 Characteristics of FO membranes 

     Figure 3 shows the morphology of surfaces and cross sections of substrates after 

coating with interfacial polymerization (PS-b-P4VP/IP and PES/IP). The IP surface on a 

PS-b-P4VP substrate has smaller and more regular spherical nodules while the 

structures on the PES substrate have larger features with more irregular shapes. The IP 

layer’s thickness on PES substrate ( 345 nm) is higher than on PS-b-P4VP ( 91 nm). 

The AFM images are consistent with the FESEM observations regarding the shape and 

size of the IP layer features. The average roughness is around 14 nm for PS-b-P4VP/IP 

membrane and 65 nm for PES/IP membrane. This is the first time that block copolymer 

membranes are used as the substrate for interfacial polymerization. We observe that 
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the morphology of the surface on PS-b-P4VP/IP membrane reflects the isoporous 

morphology of the substrate. 

     The formation of the IP layer is highly influenced by the morphology and 

hydrophilicity of the substrate, as demonstrated by previous work of our group with the 

inclusion of a dense and hydrophilic intermediate layer of cellulose on hydrophobic and 

porous substrates [56]. Observations by other groups on different substrates also 

confirm the importance of porosity and hydrophilicity [57, 58]. In this work the 

hydrophilicity of both substrates is similar, as indicated by contact angle values in Table 

1. Therefore, the primary effect is the substrate morphology, as well as the chemical 

interaction between the dissolved monomer (MPD) and the porous substrate. The block 

copolymer support has extremely high porosity with regular pore sizes and shapes. The 

pores have pyridine exposed for interaction with MPD. On the other hand, PES 

substrates, like almost all commonly available phase inversion membranes, have 

irregular pores with broad pore size distribution and different pore shapes. Interfacial 

polymerization takes place at the interface between the substrate soaked with MPD 

aqueous solution and the TMC dissolved in hexane, which is immiscible with the water 

phase. The monomers immediately react forming a thin polyamide layer. Interfacial 

instabilities contribute to form the layer with the typical morphology seen on PES 

substrate in Figure 3(b). The local heat generation resulting from the polymerization 

reaction itself is claimed to induce convection and lead to the rough topology [59, 60]. 

But we believe that the substrate morphology and the monomer distribution and 

availability on the substrate surface are at least as important as the local heat. When 

PES substrate is used, the reaction between monomers preferentially takes place in the 
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irregularly shaped pore areas where the MPD freely contacts the TMC monomer. The 

exothermic reaction contributes even more to the fast MPD transfer out of the pores 

leading to the rough morphology. In the case of the PS-b-P4VP substrate, the pore 

density is higher, and the chemical composition of the substrate with pyridine groups 

might also favor a better distribution of the diamine monomer on the surface. The 

reaction occurs with less convection or interface instability. Therefore, the roughness is 

lower for the PS-b-P4VP substrate than for PES, as confirmed in Figure 3. 
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Figure 3 FESEM images of surfaces and cross sections of membranes after interfacial 

polymerization on (a) PS-b-P4VP and (b) PES substrates; Inset: AFM of each surface. 

Sa and Sq are the average roughness and root mean square roughness, respectively. 
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     The transport properties of PS-b-P4VP/IP and PES/IP membranes under 

hydrodynamic pressure are listed in Table 2. Both membranes have good salt rejection 

values above 90%. The PS-b-P4VP/IP membrane has even lower salt permeability 

coefficient. The transport properties indicate the suitability of the two membranes to be 

used in FO processes. The water permeance for PS-b-P4VP/IP is lower than for 

PES/IP, although the permeance of the substrate without the IP layer is more than 3-fold 

higher. This indicates that the IP layer is formed with different characteristics. The IP 

layer on PS-b-P4VP is smoother and has a lower effective surface area, justifying the 

lower permeance. But as we see below, the pore morphology of the substrate 

contributes much more to the FO performance than the permeance of the selective 

layer. 

 

Table 2 Transport properties of PS-b-P4VP/IP and PES/IP membranes 

Membrane 

Pure water  

permeance Aa  

(L m-2 h-1 bar-1) 

Rejection 

Rb  

(%) 

Salt permeability  

coefficient 

B (L m-2 h-1) 

PS-b-P4VP/IP  0.30 ± 0.02 91.2 ± 5.3 0.19 ± 0.12 

PES/IP  0.63 ± 0.03 94.2 ± 3.6 0.26 ± 0.16 

aPure water permeance A measured under 8 bar. 

bRejection R measured under 8 bar using 2000 ppm sodium chloride solution as feed. 
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     FO tests for PS-b-P4VP/IP and PES/IP membranes were conducted using deionized 

water as feed and 2M NaCl as draw solution. The results are shown in Figure 4. 

Compared to PES/IP membranes, PS-b-P4VP/IP membranes exhibit higher water flux 

in both membrane orientations (FO and PRO modes) and also slightly higher salt flux. 

PS-b-P4VP/IP membrane has thinner IP layer and a more porous substrate with good 

interconnectivity. These characteristics lead to less internal concentration polarization 

during the FO operation. Hence, the FO performance of PS-b-P4VP/IP membrane is 

higher than that of PES/IP. 

     In most experiments described above a thick nonwoven polyester fabric (161 µm 

thickness) was used as bottom support layer for the substrate. This fabric is normally 

used in industrial applications to increase the mechanical stability of membranes where 

the polyester fabric does not affect much the membrane performance in terms of water 

flux in applications for which hydrodynamic pressure is the driving force. However, in 

forward osmosis a thick and dense fabric contributes to internal concentration 

polarization and makes FO performance worse. Therefore, PS-b-P4VP/IP membranes 

were later prepared using a thinner woven fabric with more open porosity (mesh size of 

50 µm and thickness of 60 µm). The results with the new membranes are shown in 

Figure 4. The FO water flux was almost twice increased in FO mode, and around 20% 

in PRO mode. Meanwhile, an increase of salt flux was also observed, indicating the 

presence of defects in the polyamide layer, which was formed on a rougher and thinner 

substrate layer prepared with an open woven fabric. 
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(a) 

 

(b) 

Figure 4. (a) Water and (b) salt fluxes in FO and PRO modes. 

4.3 Digital membrane morphology 

     We used a micro-scale simulation approach to model the PS-b-P4VP membrane. 

We observed from the FESEM images in Figures 5 and 6 that the PS-b-P4VP substrate 
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has a denser layer on top and a homogeneous sponge-like microstructure far from the 

surface. Thus, we considered the substrate to consist of three layers: (1) top layer, (2) 

sponge-like middle layer, and (3) nonwoven support at the bottom, as depicted in Figure 

8. Layer 1 includes both the top patterned regular pores and the sponge-like structure 

immediately below them.  

     Using the measured characteristics and the FESEM images, we digitally 

reconstructed the microstructure of each layer. Figures 5-7 show FESEM images of 

each layer together with their digital prototypes, respectively. Table 3 shows the 

measured characteristics of the real PS-b-P4VP substrate and the calculated 

characteristics of each layer. For the real PS-b-P4VP substrate we could measure only 

cumulative characteristics for layers 1 and 2 together, while in the simulation we 

reproduced each layer separately and computed separately all characteristics, such as 

permeability K and effective diffusivity Deff. The effective diffusivity was not available 

from experiments, but is important for the FO performance. Figure 8 summarizes each 

layer and presents their 3D digital prototype, respectively. 

  



 28 

 

 

Figure 5. FESEM image and digital prototype of the denser top layer (1): (a) surface and 

(b) cross section view. 

 

 

Figure 6. FESEM cross-section image and digital prototype of the sponge-like middle 

layer (2). 
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Figure 7. FESEM (a) surface and (b) cross-section images and the corresponding digital 

prototypes of the nonwoven fabric (layer 3). 

Table 3. Properties of the PS-b-P4VP substrate layers 

Layer 

Thickness 

(µm) 

Porosity 

(%) 

Surface 

porosity 

(%) 

Permeability 

(m
2
) 

Diffusivity 

(%) 

Exp.
a
 Num.

b
 Exp. Num. Exp. Num. Exp. Num. Exp. Num. 

#1 -- 2.5 -- 66.8 18 18.8 -- 1.63×10
-17

 -- 17.5 

#2 -- 65.5 -- 66.2 -- -- -- 1.53×10
-16

 -- 43.5 

#1+#2 68 68 64.0 66.2 -- -- 1.25×10
-16

 1.17×10
-16

 -- -- 

#3 161 161 57.7
c
 54.9 -- -- 1.31×10

-12
 1.12×10

-12
 -- 27.4 

aExp.: data experimentally obtained 

bNum.: data obtained from or applied in the simulation 

cNonwoven fabric porosity is 57.7% measured by mercury porosimetry and 49.8% 
measured by the wet-dry method. 
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Figure 8. 3D digital substrate layers. 
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4.4 FO cross flow simulations 

     After we obtained all necessary parameters, mainly the permeability K and effective 

diffusivity Deff, for all three layers from the micro-scale simulations, we run macro-scale 

FO simulations. The substrate was composed of three layers; each layer was 

considered as a homogenized porous medium; the selective layer was modeled by 

interfacial conditions. First, we run simulation in FO mode and fit the unknown water 

and solute permeabilities of the selective layer, Ks and B respectively. Then, we 

changed the membrane orientation and predicted the FO performance in the PRO 

mode using the obtained parameters. For the simulations, we used 2D counter-current 

cross flow setup (see Figure 9). The permeability K and effective diffusivity Deff for the 

three homogenized layers are shown in Table 3. All other numerical parameters used in 

the simulations are presented in Table 4. 

 

Figure 9. Velocity distribution in 2D counter-current cross flow FO setup. 
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Table 4. Input parameters for the macro-scale FO experiment 

Parameter Unit Value 

Density ρ [kg/m3]  988.207 

Viscosity µ  [Pa s]  0.001002 

Flow rate in the cross-flow channels  [L/min]  0.2 

Heights of the cross-flow channels  [mm]  1 

Length of the cross-flow channels  [mm] 20 

Concentration in the draw channel [M]  2 

Concentration in the feed channel [M]  0 

Molecular diffusion D in Ωf [mm2/s]  0.001 

Water permeability of the selective layer Ks  [m2]  6.48 × 10−23 

Solute permeability of the selective layer B  [m/s]  3 × 10−8 

Thickness of the selective layer s [nm]  90 

Osmotic pressure π [KPa]  379.8C2 + 4260C 

 

     Figure 9 shows the counter-cross flow setup and obtained velocity distribution. 

Figure 10 shows the concentration distributions in the FO and PRO mode. To show 

internal and external concentration polarization, the computational domain is split in 

three regions, namely the top cross-flow channel, the membrane, and the bottom cross-

flow channel. In each region concentration distribution has its own color legend (on the 
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right side in the figure). Figure 11 shows the simulated water and salt fluxes in 

comparison with the experimental ones. A good match between experiments and 

simulations was obtained with an error around 10%. One source of the error is the 

reduction of the problem dimensionality. In macro-scale simulations we consider only 

2D setup and neglect the shape of the cell element. Another source of the error is the 

limited data about the membrane microstructure. 

 

 

                             (a)

 

                             (b) 

Figure 10.  Concentration distributions for (a) FO and (b) PRO mode. 
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(a) 

 

(b) 

Figure 11. Comparison between experimental and simulated values of (a) water and (b) 

salt fluxes.  

 

5 Conclusions 

     We propose a multi-scale simulation approach to model FO membranes with multi-

layered homogeneous morphology and FO processes. We model PS-b-P4VP/IP 

membranes and validate the simulation results with experiments. The proposed 

simulation approach takes into account the microstructure of the membrane, which is 
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important for the internal concentration polarization and FO performance. Based on the 

simulation results, we conclude that the effective diffusivity needs careful treatment 

when modeling FO membranes and, by using our simulation approach, it can be 

accounted for accurately. 

     The proposed modeling approach opens new opportunities in the design of FO 

membranes. We demonstrate the modeling efficiency for a specific morphology, which 

we investigate experimentally in this work. However, we anticipate that the approach 

can be applied to the microstructures relevant for FO with different porosity, 

permeability, effective diffusivity, and thickness values. The simulations can be used for 

process optimization, particularly to choose the most adequate membrane morphology 

for a specific application. The approach used here is valid for systems without lateral 

macroscopic heterogeneity, e. g. is valid for membranes with sponge-like structure or 

regular nanosized cylinders. For membranes with larger heterogeneities, such as finger-

like cavities, additional adjustments are still needed to provide a more realistic 

prediction, closer to the experimental results. Average parameters such as Darcy 

permeability and effective diffusivity from the micro-scale modeling can be fed into the 

macro-scale simulation, and the micro- and macro-scale processes can be considered 

separately. But averaging heterogeneities such as large finger-like cavities could 

introduce macroscopic effects, e.g. flow channeling, and deviate the modeling 

predictions from real experimental observations. More complex simulations are under 

consideration to extend the current approach to these membranes. 

     In the specific case investigated in this work we demonstrate that for FO 

performance not always the most permeable membrane is the most effective. The pore 
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morphology of the substrate can be more relevant, reducing the internal concentration 

polarization and finally leading to higher water flux. Therefore, block copolymer porous 

substrates with as uniform pore size on the surface, less tortuosity through the 

membrane, better pore interconnectivity, and high porosity were superior when 

compared to more common polysulfone substrates. 
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