8 research outputs found

    Formation of Gold Nanoparticle Self-Assembling Films in Various Polymer Matrices for SERS Substrates

    Get PDF
    Surface-enhanced Raman spectroscopy (SERS) is regarded as a versatile tool for studying the composition and structure of matter. This work has studied the preparation of a SERS substrate based on a self-assembling plasmonic nanoparticle film (SPF) in a polymer matrix. Several synthesis parameters for the SPF are investigated, including the size of the particles making up the film and the concentration and type of the self-assembling agent. The result of testing systems with different characteristics is discussed using a model substance (pseudo isocyaniniodide). These models can be useful in the study of biology and chemistry. Research results contain the optimal parameters for SPF synthesis, maximizing the SERS signal. The optimal procedure for SPF assembly is determined and used for the synthesis of composite SPFs within different polymer matrices. SPF in a polymer matrix is necessary for the routine use of the SERS substrate for various types of analytes, including solid samples or those sensitive to contamination. Polystyrene, polyvinyl alcohol (PVA), and polyethylene are investigated to obtain a polymer matrix for SPF, and various methods of incorporating SPF into a polymer matrix are being explored. It is found that films with the best signal enhancement and reproducibility were obtained in polystyrene. The minimum detectable concentration for the SERS substrate obtained is equal to 10 10 M We prepared a SERS substrate with an analytical enhancement factor of 2.7 104, allowing an increase in the detection sensitivity of analyte solutions of five orders of magnitude

    Proceedings of the 24th Paediatric Rheumatology European Society Congress: Part three

    Get PDF
    From Springer Nature via Jisc Publications Router.Publication status: PublishedHistory: collection 2017-09, epub 2017-09-0

    A Novel Proline-Rich Cathelicidin from the Alpaca Vicugna pacos with Potency to Combat Antibiotic-Resistant Bacteria: Mechanism of Action and the Functional Role of the C-Terminal Region

    No full text
    Over recent years, a growing number of bacterial species have become resistant to clinically relevant antibiotics. Proline-rich antimicrobial peptides (PrAMPs) having a potent antimicrobial activity and a negligible toxicity toward mammalian cells attract attention as new templates for the development of antibiotic drugs. Here, we mined genomes of all living Camelidae species and found a novel family of Bac7-like proline-rich cathelicidins which inhibited bacterial protein synthesis. The N-terminal region of a novel peptide from the alpaca Vicugna pacos named VicBac is responsible for inhibition of bacterial protein synthesis with an IC50 value of 0.5 µM in the E. coli cell-free system whereas the C-terminal region allows the peptide to penetrate bacterial membranes effectively. We also found that the full-length VicBac did not induce bacterial resistance after a two-week selection experiment, unlike the N-terminal truncated analog, which depended on the SbmA transport system. Both pro- and anti-inflammatory action of VicBac and its N-terminal truncated variant on various human cell types was found by multiplex immunoassay. The presence of the C-terminal tail in the natural VicBac does not provide for specific immune-modulatory effects in vitro but enhances the observed impact compared with the truncated analog. The pronounced antibacterial activity of VicBac, along with its moderate adverse effects on mammalian cells, make this molecule a promising scaffold for the development of peptide antibiotics

    Structural and Immunologic Properties of the Major Soybean Allergen Gly m 4 Causing Anaphylaxis

    No full text
    Gly m 4 is the major soybean allergen, causing birch pollen cross allergic reactions. In some cases, Gly m 4-mediated anaphylaxis takes place, but the causative factors are still unknown. Here, we studied the structural and immunologic properties of Gly m 4 to shed light on this phenomenon. We showed that Gly m 4 retained its structure and IgE-binding capacity after heating. Gly m 4 was cleaved slowly under nonoptimal gastric conditions mimicking duodenal digestion, and IgE from the sera of allergic patients interacted with the intact allergen rather than with its proteolytic fragments. Similar peptide clusters of Bet v 1 and Gly m 4 were formed during allergen endolysosomal degradation in vitro, but their sequence identity was insignificant. Animal polyclonal anti-Gly m 4 and anti-Bet v 1 IgG weakly cross-reacted with Bet v 1 and Gly m 4, respectively. Thus, we supposed that not only conserved epitopes elicited cross-reactivity with Bet v 1, but also variable epitopes were present in the Gly m 4 structure. Our data suggests that consumption of moderately processed soybean-based drinks may lead to the neutralizing of gastric pH as a result of which intact Gly m 4 can reach the human intestine and cause IgE-mediated system allergic reactions

    Antimicrobial Activity and Immunomodulatory Properties of Acidocin A, the Pediocin-like Bacteriocin with the Non-Canonical Structure

    No full text
    Pediocin-like bacteriocins are among the natural antimicrobial agents attracting attention as scaffolds for the development of a new generation of antibiotics. Acidocin A has significant structural differences from most other members of this subclass. We studied its antibacterial and cytotoxic activity, as well as effects on the permeability of E. coli membranes in comparison with avicin A, the typical pediocin-like bacteriocin. Acidocin A had a more marked tendency to form an alpha-helical structure upon contact with detergent micelles, as was shown by CD spectroscopy, and demonstrated considerably less specific mode of action: it inhibited growth of Gram-positive and Gram-negative strains, which were unsusceptible to avicin A, and disrupted the integrity of outer and inner membranes of E. coli. However, the peptide retained a low toxicity towards normal and tumor human cells. The effect of mutations in the pediocin box of acidocin A (on average, a 2–4-fold decrease in activity) was less pronounced than is usually observed for such peptides. Using multiplex analysis, we showed that acidocin A and avicin A modulated the expression level of a number of cytokines and growth factors in primary human monocytes. Acidocin A induced the production of a number of inflammatory mediators (IL-6, TNFα, MIG/CXCL9, MCP-1/CCL2, MCP-3/CCL7, and MIP-1β) and inhibited the production of some anti-inflammatory factors (IL-1RA, MDC/CCL22). We assumed that the activity of acidocin A and similar peptides produced by lactic acid bacteria might affect the functional state of the human intestinal tract, not only through direct inhibition of various groups of symbiotic and pathogenic bacteria, but also via immunomodulatory effects

    Proceedings of the 24th Paediatric Rheumatology European Society Congress: Part three

    No full text
    corecore