46 research outputs found

    Relativistic study of the nuclear anapole moment effects in diatomic molecules

    Full text link
    Nuclear-spin-dependent (NSD) parity violating effects are studied for a number of diatomic molecules using relativistic Hartree-Fock and density functional theory and accounting for core polarization effects. Heavy diatomic molecules are good candidates for the successful measurement of the nuclear anapole moment, which is the dominant NSD parity violation term in heavy elements. Improved results for the molecules studied in our previous publication [Borschevsky et al., Phys. Rev. A 85, 052509 (2012)] are presented along with the calculations for a number of new promising candidates for the nuclear anapole measurements.Comment: 7 pages, 1 figure. arXiv admin note: substantial text overlap with arXiv:1209.4282, arXiv:1201.058

    Carbonyl compounds of Rh, Ir, and Mt: electronic structure, bonding and volatility

    No full text
    corecore