8 research outputs found

    Monitoring Strategic Hydraulic Infrastructures by Brillouin Distributed Fiber Optic Sensors

    Get PDF
    We present a case study of a Structural Health Monitoring (SHM) hybrid system based on Brillouin Distributed Fiber Optic Sensors (D-FOS), Vibrating Wire (VW) extensometers and temperature probes for an existing historical water penstock bridge positioned in a mountain valley in Valle d’Aosta Region, Northwestern Italy. We assessed Brillouin D-FOS performances for this kind of infrastructure, characterized by a complex structural layout and located in a harsh environment. A comparison with the more traditional strain monitoring technology offered by VW strain gauges was performed. The D-FOS strain cable has been bonded to the concrete members using a polyurethane-base adhesive, ensuring a rigid strain transfer. The raw data from all sensors are interpolated on a unique general timestamp with hourly resolution. Strain data from D-FOS and VW strain gauges are then corrected from temperature effects and compared. Considering the inherent differences between the two monitoring technologies, results show a good overall matching between strain time series collected by D-FOS and VW sensors. Brillouin D-FOS proves to be a good solution in terms of performance and economic investment for SHM systems on complex infrastructures such as hydropower plants, which involve extensive geometry combined with the need for detailed and continuous strain monitoring

    Application of an innovative, low-maintenance weir to protect against debris flows and floods in Ottone, Italy

    No full text
    The need of a low-maintenance and easy-applicable apparatus against debris flow led Maccaferri Innovation Center and the Politecnico of Milan to a new hydraulic-based approach that was focused on the application of a special weir called Mini Skirt Check Dam (MSCD). After a three-years research on applicable equations, a construction site in Ottone (Italy) was identified to have been affected by destructive debris flow in the past years. The site is characterized by the presence of an underground pipe that collects the stream flow rate flowing under the village square. The purpose of this work is to design a MSCD, able to prevent a pressure driven flow in the underground pipe and to avoid the related risk for the inhabitant of the village. MSCD is a special weir, which consists in large wings to slow the flow and a ring net to block boulders and logs, as to become a sifting filter of the debris. As to design the best performing apparatus, materials and type of anchoring are crucial; for this reason, an analysis of the impact pressure was performed. The case study has considered several different aspects: hydrology, size of the material and its characteristics and previous events to have a complete analysis of what could happen in the next events. The result of this collaboration is the complete design of a MSCD, ready to be installed

    A Zero-Order Flood Damage Model for Regional-Scale Quick Assessments

    No full text
    Quantitative data on observed flood ground effects are precious information to assess current risk levels and to improve our capability to forecast future flood damage, with the final aim of defining effective prevention policies and checking their success. This paper presents the first collection and analysis of flood damage claims produced in Italy in the past 7 years since a homogeneous national procedure for damage recognition became available. The database currently contains more than 70,000 claims referring to significant events and shows good homogeneity on the intensity of the related phenomena. We then propose an empirical model, based on observed data, to allow for a quick estimation of direct damage to private assets (i.e., residential buildings), based only on the knowledge of the perimeter of the flooded area. Single model calibration was performed at the multi-regional scale, focused on southern Italy. Model validation shows encouraging performances, considering the considerable natural uncertainty that characterizes this type of estimate. The procedure is of great interest when there is a need to evaluate, however roughly, flood damage in the immediacy of the event to assess the extent of the flood effects and to plan support actions for the affected communitie

    Conceptualization and Prototype of an Anti-Erosion Sensing Revetment for Levee Monitoring: Experimental Tests and Numerical Modeling

    No full text
    The problem of levee embankment control during high flows is crucial for flood risk management in floodplains. Levee defense lines are often hundreds of kilometers long and surveys during emergencies are not easy tasks. For these reasons, levees monitored with in situ sensors and a suitable Information Technology (IT) real-time data communication and integration infrastructure, so-called “smart levees”, are gaining increasing interest as a crucial protection technology in floodplains. The paper presents the conceptualization of a prototype of a levee smart revetment, based on the integration of an optical fiber (OF) cable into a steel double-twisted wire mesh. In this paper the feasibility of this kind of revetment is firstly assessed. The flow pattern of overtopping water on the embankment is discussed, thus producing a raw estimation of the shear stress acting on the revetment in the field. A sample case is then analyzed in both numerical and laboratory tests. For this purpose, a numerical Finite Element Model (FEM) to describe the mechanical behavior of a double-twisted wire mesh when loaded along its own plane is presented. Numerical results indicate that the related strain, relatively low as compared to the steel wire yield stress, can be fully detected by the optical fiber continuous Brillouin sensor. This has been validated by the experimental activity performed and a digital twin of the prototype of the smart revetment, suitable for virtually testing the product under any load and constraint conditions and tailoring the production process, has been created

    Covid-19 emergency management and preparedness in cross-border territories. Collection of experiences, needs and public health strategies in the framework of interreg GESTI.S.CO. project

    No full text
    Background and aim: The Covid-19 pandemic highlighted management difficulties in neighboring territories. The aim of the paper is to report the needs of different stakeholders during, before and after Covid-19 emergency with specific regard to challenges faced by public administrators in confined territories. Methods: In the framework of Interreg GESTI.S.CO. project the study has been designed with two methodological steps: i) a co-design workshop and ii) a web-based survey. The workshop includes both an audience interaction session and focus groups. Then, starting from the focus group results, the survey has been designed with 30 questions and submitted to the 227 municipalities located between Italy and Switzerland to understand the implementation of Public Health strategies in local emergency planning. Results: The interactive session highlighted that most of the critical issues are related to the lack of communication and planning in Public Health policies. The survey highlighted that the local emergency plans rarely integrate a section on health emergencies (30% Italy and 50% Switzerland). Only 20% of the respondents dedicated a section for Covid-19 emergency management. Most of them did not activate initiatives to support mental health. 90% of the municipalities did not cooperate with the neighboring country, but half of them think that it would have been much more useful. The 55% of the Italian respondents are currently updating their emergency plan and will implement it with some Public Health input. Conclusions: The study provides insights that can support policy makers in improving their strategy in responding to future pandemic. (www.actabiomedica.it)

    Comparing accuracy of tomosynthesis plus digital mammography or synthetic 2D mammography in breast cancer screening: baseline results of the MAITA RCT consortium

    No full text
    Aim: The analyses here reported aim to compare the screening performance of digital tomosynthesis (DBT) versus mammography (DM). Methods: MAITA is a consortium of four Italian trials, REtomo, Proteus, Impeto, and MAITA trial. The trials adopted a two-arm randomised design comparing DBT plus DM (REtomo and Proteus) or synthetic-2D (Impeto and MAITA trial) versus DM; multiple vendors were included. Women aged 45 to 69 years were individually randomised to one round of DBT or DM. Findings: From March 2014 to February 2022, 50,856 and 63,295 women were randomised to the DBT and DM arm, respectively. In the DBT arm, 6656 women were screened with DBT plus synthetic-2D. Recall was higher in the DBT arm (5·84% versus 4·96%), with differences between centres. With DBT, 0·8/1000 (95% CI 0·3 to 1·3) more women received surgical treatment for a benign lesion. The detection rate was 51% higher with DBT, ie. 2·6/1000 (95% CI 1·7 to 3·6) more cancers detected, with a similar relative increase for invasive cancers and ductal carcinoma in situ. The results were similar below and over the age of 50, at first and subsequent rounds, and with DBT plus DM and DBT plus synthetic-2D. No learning curve was appreciable. Detection of cancers >= 20 mm, with 2 or more positive lymph nodes, grade III, HER2-positive, or triple-negative was similar in the two arms. Interpretation: Results from MAITA confirm that DBT is superior to DM for the detection of cancers, with a possible increase in recall rate. DBT performance in screening should be assessed locally while waiting for long-term follow-up results on the impact of advanced cancer incidence
    corecore