9 research outputs found

    Continuous glucose monitoring in pregnant women with type 1 diabetes (CONCEPTT): a multicentre international randomised controlled trial.

    Get PDF
    BACKGROUND: Pregnant women with type 1 diabetes are a high-risk population who are recommended to strive for optimal glucose control, but neonatal outcomes attributed to maternal hyperglycaemia remain suboptimal. Our aim was to examine the effectiveness of continuous glucose monitoring (CGM) on maternal glucose control and obstetric and neonatal health outcomes. METHODS: In this multicentre, open-label, randomised controlled trial, we recruited women aged 18-40 years with type 1 diabetes for a minimum of 12 months who were receiving intensive insulin therapy. Participants were pregnant (≤13 weeks and 6 days' gestation) or planning pregnancy from 31 hospitals in Canada, England, Scotland, Spain, Italy, Ireland, and the USA. We ran two trials in parallel for pregnant participants and for participants planning pregnancy. In both trials, participants were randomly assigned to either CGM in addition to capillary glucose monitoring or capillary glucose monitoring alone. Randomisation was stratified by insulin delivery (pump or injections) and baseline glycated haemoglobin (HbA1c). The primary outcome was change in HbA1c from randomisation to 34 weeks' gestation in pregnant women and to 24 weeks or conception in women planning pregnancy, and was assessed in all randomised participants with baseline assessments. Secondary outcomes included obstetric and neonatal health outcomes, assessed with all available data without imputation. This trial is registered with ClinicalTrials.gov, number NCT01788527. FINDINGS: Between March 25, 2013, and March 22, 2016, we randomly assigned 325 women (215 pregnant, 110 planning pregnancy) to capillary glucose monitoring with CGM (108 pregnant and 53 planning pregnancy) or without (107 pregnant and 57 planning pregnancy). We found a small difference in HbA1c in pregnant women using CGM (mean difference -0·19%; 95% CI -0·34 to -0·03; p=0·0207). Pregnant CGM users spent more time in target (68% vs 61%; p=0·0034) and less time hyperglycaemic (27% vs 32%; p=0·0279) than did pregnant control participants, with comparable severe hypoglycaemia episodes (18 CGM and 21 control) and time spent hypoglycaemic (3% vs 4%; p=0·10). Neonatal health outcomes were significantly improved, with lower incidence of large for gestational age (odds ratio 0·51, 95% CI 0·28 to 0·90; p=0·0210), fewer neonatal intensive care admissions lasting more than 24 h (0·48; 0·26 to 0·86; p=0·0157), fewer incidences of neonatal hypoglycaemia (0·45; 0·22 to 0·89; p=0·0250), and 1-day shorter length of hospital stay (p=0·0091). We found no apparent benefit of CGM in women planning pregnancy. Adverse events occurred in 51 (48%) of CGM participants and 43 (40%) of control participants in the pregnancy trial, and in 12 (27%) of CGM participants and 21 (37%) of control participants in the planning pregnancy trial. Serious adverse events occurred in 13 (6%) participants in the pregnancy trial (eight [7%] CGM, five [5%] control) and in three (3%) participants in the planning pregnancy trial (two [4%] CGM and one [2%] control). The most common adverse events were skin reactions occurring in 49 (48%) of 103 CGM participants and eight (8%) of 104 control participants during pregnancy and in 23 (44%) of 52 CGM participants and five (9%) of 57 control participants in the planning pregnancy trial. The most common serious adverse events were gastrointestinal (nausea and vomiting in four participants during pregnancy and three participants planning pregnancy). INTERPRETATION: Use of CGM during pregnancy in patients with type 1 diabetes is associated with improved neonatal outcomes, which are likely to be attributed to reduced exposure to maternal hyperglycaemia. CGM should be offered to all pregnant women with type 1 diabetes using intensive insulin therapy. This study is the first to indicate potential for improvements in non-glycaemic health outcomes from CGM use. FUNDING: Juvenile Diabetes Research Foundation, Canadian Clinical Trials Network, and National Institute for Health Research

    A Protocol for a Pan-Canadian Prospective Observational Study on Active Surveillance or Surgery for Very Low Risk Papillary Thyroid Cancer

    Get PDF
    BackgroundThe traditional management of papillary thyroid cancer (PTC) is thyroidectomy (total or partial removal of the thyroid). Active surveillance (AS) may be considered as an alternative option for small, low risk PTC. AS involves close follow-up (including regularly scheduled clinical and radiological assessments), with the intention of intervening with surgery for disease progression or patient preference.MethodsThis is a protocol for a prospective, observational, long-term follow-up multi-centre Canadian cohort study. Consenting eligible adults with small, low risk PTC (< 2cm in maximal diameter, confined to the thyroid, and not immediately adjacent to critical structures in the neck) are offered the choice of AS or surgery for management of PTC. Patient participants are free to choose either option (AS or surgery) and the disease management course is thus not assigned by the investigators. Surgery is provided as usual care by a surgeon in an institution of the patient’s choice. Our primary objective is to determine the rate of ‘failure’ of disease management in respective AS and surgical arms as defined by: i) AS arm – surgery for progression of PTC, and ii) surgical arm - surgery or other treatment for disease persistence or progression after completing initial treatment. Secondary outcomes include long-term thyroid oncologic and treatment outcomes, as well as patient-reported outcomes.DiscussionThe results from this study will provide long-term clinical and patient reported outcome evidence regarding active surveillance or immediate surgery for management of small, low risk PTC. This will inform future clinical trials in disease management of small, low risk papillary thyroid cancer.Registration detailsThis prospective observational cohort study is registered on clinicaltrials.gov (NCT04624477), but it should not be considered a clinical trial as there is no assigned intervention and patients are free to choose either AS or surgery

    Allocation techniques for balance at baseline in cluster randomized trials: a methodological review

    No full text
    Abstract Reviews have repeatedly noted important methodological issues in the conduct and reporting of cluster randomized controlled trials (C-RCTs). These reviews usually focus on whether the intracluster correlation was explicitly considered in the design and analysis of the C-RCT. However, another important aspect requiring special attention in C-RCTs is the risk for imbalance of covariates at baseline. Imbalance of important covariates at baseline decreases statistical power and precision of the results. Imbalance also reduces face validity and credibility of the trial results. The risk of imbalance is elevated in C-RCTs compared to trials randomizing individuals because of the difficulties in recruiting clusters and the nested nature of correlated patient-level data. A variety of restricted randomization methods have been proposed as way to minimize risk of imbalance. However, there is little guidance regarding how to best restrict randomization for any given C-RCT. The advantages and limitations of different allocation techniques, including stratification, matching, minimization, and covariate-constrained randomization are reviewed as they pertain to C-RCTs to provide investigators with guidance for choosing the best allocation technique for their trial.</p

    Allocation techniques for balance at baseline in cluster randomized trials: a methodological review

    No full text
    Abstract Reviews have repeatedly noted important methodological issues in the conduct and reporting of cluster randomized controlled trials (C-RCTs). These reviews usually focus on whether the intracluster correlation was explicitly considered in the design and analysis of the C-RCT. However, another important aspect requiring special attention in C-RCTs is the risk for imbalance of covariates at baseline. Imbalance of important covariates at baseline decreases statistical power and precision of the results. Imbalance also reduces face validity and credibility of the trial results. The risk of imbalance is elevated in C-RCTs compared to trials randomizing individuals because of the difficulties in recruiting clusters and the nested nature of correlated patient-level data. A variety of restricted randomization methods have been proposed as way to minimize risk of imbalance. However, there is little guidance regarding how to best restrict randomization for any given C-RCT. The advantages and limitations of different allocation techniques, including stratification, matching, minimization, and covariate-constrained randomization are reviewed as they pertain to C-RCTs to provide investigators with guidance for choosing the best allocation technique for their trial

    Patient-reported outcome measures for assessing health-related quality of life in people with type 2 diabetes: A systematic review

    No full text
    Patient-Reported Outcome Measures (PROMs) are important tools to assess outcomes relevant to patients, with Health-Related Quality Of Life (HRQOL) as an important construct to be measured. Many different HRQOL PROMs are used in the type 2 diabetes field, however a complete overview of these PROMs is currently lacking. We therefore aimed to systematically describe and classify the content of all PROMs that have specifically been developed or validated to measure (aspects of) HRQOL in people with type 2 diabetes. A literature search was performed in PubMed and EMBASE until 31 December 2021. Studies on the development or validation of a PROM measuring HRQOL, or aspects of HRQOL, in people with type 2 diabetes were included. Title and abstract and full-text screening were conducted by two independent researchers and data extraction was performed independently by one of the researchers. Data were extracted on language in which the PROM was developed, target population, construct(s) being measured, names of (sub)scales and number of items per (sub)scale. In addition, all PROMs and subscales were classified according to specific aspects of HRQOL based on the Wilson & Cleary model (symptom status, functional status, general health perceptions) to aid researchers in PROM selection. In total 220 studies were identified that developed or validated PROMs that measure (aspects of) HRQOL in people with type 2 diabetes. Of the 116 unique HRQOL PROMs, 91 (of the subscales) measured symptom status, 60 measured functional status and 26 measured general health perceptions. In addition, 16 of the PROMs (subscales) measured global quality of life. 61 of the 116 PROMs (subscales) also include characteristics of the individual (e.g. aspects of personality, coping) or environment (e.g. social or financial support) and patient-reported experience measures (PREMs, e.g. measure of a patient's perception of their personal experience of the healthcare they have received, e.g. treatment satisfaction), which are not part of the HRQOL construct. Only 9 of the 116 PROMs measure all aspects of HRQOL based on the Wilson & Cleary model. Finally, 8 of the 116 PROMs stating to measure HRQOL, measured no HRQOL construct. In conclusion, a large number of PROMs are available for people with type 2 diabetes, which intend to measure (aspects of) HRQOL. These PROMs measure a large variety of (sub)constructs, which are not all HRQOL constructs, with a small amount of PROMs not measuring HRQOL at all. There is a need for consensus on which aspects of HRQOL should be measured in people with type 2 diabetes and which PROMs to use in research and daily practice. PROSPERO: CRD42017071012. COMET database: http://www.comet-initiative.org/studies/details/956

    Metformin in women with type 2 diabetes in pregnancy (MiTy): a multicentre, international, randomised, placebo-controlled trial

    No full text
    Background: Although metformin is increasingly being used in women with type 2 diabetes during pregnancy, little data exist on the benefits and harms of metformin use on pregnancy outcomes in these women. We aimed to investigate the effects of the addition of metformin to a standard regimen of insulin on neonatal morbidity and mortality in pregnant women with type 2 diabetes. Methods: In this prospective, multicentre, international, randomised, parallel, double-masked, placebo-controlled trial, women with type 2 diabetes during pregnancy were randomly assigned from 25 centres in Canada and four in Australia to receive either metformin 1000 mg twice daily or placebo, added to insulin. Randomisation was done via a web-based computerised randomisation service and stratified by centre and pre-pregnancy BMI (<30 kg/m2 or ≥30 kg/m2) in a ratio of 1:1 using random block sizes of 4 and 6. Women were eligible if they had type 2 diabetes, were on insulin, had a singleton viable pregnancy, and were between 6 and 22 weeks plus 6 days' gestation. Participants were asked to check their fasting blood glucose level before the first meal of the day, before the last meal of the day, and 2 h after each meal. Insulin doses were adjusted aiming for identical glucose targets (fasting glucose <5·3 mmol/L [95 mg/dL], 2-h postprandial glucose <6·7 mmol/L [120 mg/dL]). Study visits were done monthly and patients were seen every 1–4 weeks as was needed for standard clinical care. At study visits blood pressure and bodyweight were measured; patients were asked about tolerance to their pills, any hospitalisations, insulin doses, and severe hypoglycaemia events; and glucometer readings were downloaded to the central coordinating centre. Participants, caregivers, and outcome assessors were masked to the intervention. The primary outcome was a composite of fetal and neonatal outcomes, for which we calculated the relative risk and 95% CI between groups, stratifying by site and BMI using a log-binomial regression model with an intention-to-treat analysis. Secondary outcomes included several relevant maternal and neonatal outcomes. The trial was registered with ClinicalTrials.gov, NCT01353391. Findings: Between May 25, 2011, and Oct 11, 2018, we randomly assigned 502 women, 253 (50%) to metformin and 249 (50%) to placebo. Complete data were available for 233 (92%) participants in the metformin group and 240 (96%) in the placebo group for the primary outcome. We found no significant difference in the primary composite neonatal outcome between the two groups (40% vs 40%; p=0·86; relative risk [RR] 1·02 [0·83 to 1·26]). Compared with women in the placebo group, metformin-treated women achieved better glycaemic control (HbA1c at 34 weeks' gestation 41·0 mmol/mol [SD 8·5] vs 43·2 mmol/mol [–10]; 5·90% vs 6·10%; p=0·015; mean glucose 6·05 [0·93] vs 6·27 [0·90]; difference −0·2 [–0·4 to 0·0]), required less insulin (1·1 units per kg per day vs 1·5 units per kg per day; difference −0·4 [95% CI −0·5 to −0·2]; p<0·0001), gained less weight (7·2 kg vs 9·0 kg; difference −1·8 [–2·7 to −0·9]; p<0·0001) and had fewer caesarean births (125 [53%] of 234 in the metformin group vs 148 [63%] of 236 in the placebo group; relative risk [RR] 0·85 [95% CI 0·73 to 0·99]; p=0·031). We found no significant difference between the groups in hypertensive disorders (55 [23%] in the metformin group vs 56 [23%] in the placebo group; p=0·93; RR 0·99 [0·72 to 1·35]). Compared with those in the placebo group, metformin-exposed infants weighed less (mean birthweight 3156 g [SD 742] vs 3375 g [742]; difference −218 [–353 to −82]; p=0·002), fewer were above the 97th centile for birthweight (20 [9%] in the metformin group vs 34 [15%] in the placebo group; RR 0·58 [0·34 to 0·97]; p=0·041), fewer weighed 4000 g or more at birth (28 [12%] in the metformin group vs 44 [19%] in the placebo group; RR 0·65 [0·43 to 0·99]; p=0·046), and metformin-exposed infants had reduced adiposity measures (mean sum of skinfolds 16·0 mm [SD 5·0] vs 17·4 [6·2] mm; difference −1·41 [–2·6 to −0·2]; p=0·024; mean neonatal fat mass 13·2 [SD 6·2] vs 14·6 [5·0]; p=0·017). 30 (13%) infants in the metformin group and 15 (7%) in the placebo group were small for gestational age (RR 1·96 [1·10 to 3·64]; p=0·026). We found no significant difference in the cord c-peptide between groups (673 pmol/L [435] in the metformin group vs 758 pmol/L [595] in the placebo group; p=0·10; ratio of means 0·88 [0·72 to 1·02]). The most common adverse event reported was gastrointestinal (38 events in the metformin group and 38 events in the placebo group). Interpretation: We found several maternal glycaemic and neonatal adiposity benefits in the metformin group. Along with reduced maternal weight gain and insulin dosage and improved glycaemic control, the lower adiposity and infant size measurements resulted in fewer large infants but a higher proportion of small-for-gestational-age infants. Understanding the implications of these effects on infants will be important to properly advise patients who are contemplating the use of metformin during pregnancy.The trial was funded by the Canadian Institutes of Health Research, the Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada, and the Department of Medicine, University of Toronto, Toronto, ON, Canada
    corecore