133 research outputs found

    Method for direct observation of coherent quantum oscillations in a superconducting phase qubit

    Full text link
    Time-domain observations of coherent oscillations between quantum states in mesoscopic superconducting systems were so far restricted to restoring the time-dependent probability distribution from the readout statistics. We propose a new method for direct observation of Rabi oscillations in a phase qubit. The external source, typically in GHz range, induces transitions between the qubit levels. The resulting Rabi oscillations of supercurrent in the qubit loop are detected by a high quality resonant tank circuit, inductively coupled to the phase qubit. Detailed calculation for zero and non-zero temperature are made for the case of persistent current qubit. According to the estimates for dephasing and relaxation times, the effect can be detected using conventional rf circuitry, with Rabi frequency in MHz range.Comment: 5 pages, 1 figure, to appear in Phys.Rev.

    Scanning Quantum Decoherence Microscopy

    Full text link
    The use of qubits as sensitive magnetometers has been studied theoretically and recent demonstrated experimentally. In this paper we propose a generalisation of this concept, where a scanning two-state quantum system is used to probe the subtle effects of decoherence (as well as its surrounding electromagnetic environment). Mapping both the Hamiltonian and decoherence properties of a qubit simultaneously, provides a unique image of the magnetic (or electric) field properties at the nanoscale. The resulting images are sensitive to the temporal as well as spatial variation in the fields created by the sample. As an example we theoretically study two applications of this technology; one from condensed matter physics, the other biophysics. The individual components required to realise the simplest version of this device (characterisation and measurement of qubits, nanoscale positioning) have already been demonstrated experimentally.Comment: 11 pages, 5 low quality (but arXiv friendly) image

    Josephson-phase qubit without tunneling

    Full text link
    We show that a complete set of one-bit gates can be realized by coupling the two logical states of a phase qubit to a third level (at higher energy) using microwave pulses. Thus, one can achieve coherent control without invoking any tunneling between the qubit levels. We propose two implementations, using rf-SQUIDs and d-wave Josephson junctions.Comment: REVTeX4, 4pp., 6 EPS figure files; N.B.: "Alec" is my first, and "Maassen van den Brink" my family name. v2: gate universality fleshed out, small fix in d-wave decoherence para, discussion expanded, two Refs. added. v3: some more Refs., a molecular example, and a few minor fixes; final, to appear in PRB Rapid

    Zero-energy Andreev surface bound states in the lattice model

    Full text link
    The conditions for zero-energy Andreev surface bound states to exist are found for the lattice model of d-wave superconductor with arbitrary surface orientation. Both nearest neighbors and next nearest neighbors models are considered. It is shown that the results are very sensitive to the surface orientation. In particular, for half-filled (hl0)(hl0)-surface zero-energy Andreev surface states only appear under the condition that hh and ll are odd simultaneouslyComment: 9 pages, 1 figur

    Strong interconversion of non-polar phonons and Josephson plasma oscillations induced by equilibrium Josephson currents in high T_c superconductors

    Full text link
    We analyze consequences of dynamical modulations of Josephson current by non-polar lattice mode in the Josephson junction barrier. In the high TcT_c junctions, the effect of such modulations can be anomalously strong due to the proximity of the insulating barrier to the superconducting state. Accordingly, the interconversion of sound (as well as other non-polar phonons) and the Josephson plasma oscillations mediated by stationary Josephson currents, which may be present in the junction due to various reasons, becomes possible. We suggest that this effect can be employed for imaging of the stationary Josephson currents. Estimates of the effect are given.Comment: 11 RevTeX pages, no figure

    Induced paramagnetic states by localized π\pi -loops in grain boundaries

    Full text link
    Recent experiments on high-temperature superconductors show paramagnetic behavior localized at grain boundaries (GB). This paramagnetism can be attributed to the presence unconventional d-wave induced π\pi-junctions. By modeling the GB as an array of π\pi and conventional Josephson junction we determine the conditions of the occurrence of the paramagnetic behavior.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let

    Voting 'against all' in postcommunist Russia

    Get PDF
    Since the early 1990s voters in Russia (and most of the other post-Soviet republics) have been offered the opportunity to vote ‘against all’ parties and candidates. Increasing numbers have done so. The evidence of two post-election surveys indicates that ‘against all’ voters are younger than other voters, more urban and more highly educated. They do not reject liberal democracy, but are critical of the contemporary practice of Russian politics and find no parties that adequately reflect their views. With the ending of the ‘against all’ facility in 2006 and other changes in the Russian electoral system under the Putin presidency, levels of turnout are likely to fall further and the protest vote will seek other outlets within or outside the parliamentary system

    Quantum state engineering with Josephson-junction devices

    Full text link
    We review recent theoretical and experimental progress in quantum state engineering with Josephson junction devices. The concepts of quantum computing have stimulated an increased activity in the field. Either charges or phases (fluxes) of the Josephson systems can be used as quantum degrees of freedom, and their quantum state can be manipulated coherently by voltage and current pulses. They thus can serve as qubits, and quantum logic gates can be performed. Their phase coherence time, which is limited, e.g., by the electromagnetic fluctuations in the control circuit, is long enough to allow a series of these manipulations. The quantum measurement process performed by a single-electron transistor, a SQUID, or further nanoelectronic devices is analyzed in detail.Comment: An article prepared for Reviews of Modern Physics, 46 pages, 23 figure

    Zero-bias conductance peak splitting due to multiband effect in tunneling spectroscopy

    Full text link
    We study how the multiplicity of the Fermi surface affects the zero-bias peak in conductance spectra of tunneling spectroscopy. As case studies, we consider models for organic superconductors κ\kappa-(BEDT-TTF)2_2Cu(NCS)2_2 and (TMTSF)2_2ClO4_4. We find that multiplicity of the Fermi surfaces can lead to a splitting of the zero-bias conductance peak (ZBCP). We propose that the presence/absence of the ZBCP splitting is used as a probe to distinguish the pairing symmetry in κ\kappa-(BEDT-TTF)2_2Cu(NCS)2_2.Comment: 7 pages, 7 figure

    Mobile π−\pi-kinks and half-integer zero-field-like steps in highly discrete alternating 0−π0-\pi Josephson junction arrays

    Full text link
    The dynamics of a one-dimensional, highly discrete, linear array of alternating 0−0- and π−\pi- Josephson junctions is studied numerically, under constant bias current at zero magnetic field. The calculated current - voltage characteristics exhibit half-integer and integer zero-field-like steps for even and odd total number of junctions, respectively. Inspection of the instantaneous phases reveals that, in the former case, single π−\pi-kink excitations (discrete semi-fluxons) are supported, whose propagation in the array gives rise to the 1/2−1/2-step, while in the latter case, a pair of π−\pi-kink -- π−\pi-antikink appears, whose propagation gives rise to the 1−1-step. When additional 2π−2\pi-kinks are inserted in the array, they are subjected to fractionalization, transforming themselves into two closely spaced π−\pi-kinks. As they propagate in the array along with the single π−\pi-kink or the π−\pi-kink - π−\pi-antikink pair, they give rise to higher half-integer or integer zero-field-like steps, respectively.Comment: 7 pages, 8 figures, submitted to Supercond. Sci. Techno
    • …
    corecore