32 research outputs found

    The p400 Complex Is an Essential E1A Transformation Target

    Get PDF
    AbstractHere, we report the identification of a new E1A binding protein complex that is essential for E1A-mediated transformation. Its core component is a SWI2/SNF2-related, 400 kDa protein (p400). Other components include the myc- and p/CAF-associated cofactor, TRRAP/PAF400, the DNA helicases TAP54α/β, actin-like proteins, and the human homolog of the Drosophila Enhancer of Polycomb protein. An E1A mutant, defective in p400 binding, is also defective in transformation. Certain p400 fragments partially rescued this phenotype, underscoring the role of E1A-p400 complex formation in the E1A transforming process. Furthermore, E1A and c-myc each alter the subunit composition of p400 complexes, implying that physiological p400 complex formation contributes to transformation suppression

    A novel interplay between the Fanconi anemia core complex and ATR-ATRIP kinase during DNA cross-link repair.

    Get PDF
    When DNA replication is stalled at sites of DNA damage, a cascade of responses is activated in the cell to halt cell cycle progression and promote DNA repair. A pathway initiated by the kinase Ataxia teleangiectasia and Rad3 related (ATR) and its partner ATR interacting protein (ATRIP) plays an important role in this response. The Fanconi anemia (FA) pathway is also activated following genomic stress, and defects in this pathway cause a cancer-prone hematologic disorder in humans. Little is known about how these two pathways are coordinated. We report here that following cellular exposure to DNA cross-linking damage, the FA core complex enhances binding and localization of ATRIP within damaged chromatin. In cells lacking the core complex, ATR-mediated phosphorylation of two functional response targets, ATRIP and FANCI, is defective. We also provide evidence that the canonical ATR activation pathway involving RAD17 and TOPBP1 is largely dispensable for the FA pathway activation. Indeed DT40 mutant cells lacking both RAD17 and FANCD2 were synergistically more sensitive to cisplatin compared with either single mutant. Collectively, these data reveal new aspects of the interplay between regulation of ATR-ATRIP kinase and activation of the FA pathway

    Distinctive nuclear zone for RAD51-mediated homologous recombinational DNA repair

    Get PDF
    Genome-based functions are inseparable from the dynamic higher-order architecture of the cell nucleus. In this context, the repair of DNA damage is coordinated by precise spatiotemporal controls that target and regulate the repair machinery required to maintain genome integrity. However, the mechanisms that pair damaged DNA with intact template for repair by homologous recombination (HR) without illegitimate recombination remain unclear. This report highlights the intimate relationship between nuclear architecture and HR in mammalian cells. RAD51, the key recombinase of HR, forms spherical foci in S/G2 phases spontaneously. Using super-resolution microscopy, we show that following induction of DNA double-strand breaks RAD51 foci at damaged sites elongate to bridge between intact and damaged sister chromatids; this assembly occurs within bundle-shaped distinctive nuclear zones, requires interactions of RAD51 with various factors, and precedes ATP-dependent events involved the recombination of intact and damaged DNA. We observed a time-dependent transfer of single-stranded DNA overhangs, generated during HR, into such zones. Our observations suggest that RAD51-mediated homologous pairing during HR takes place within the distinctive nuclear zones to execute appropriate recombination

    SUMOylation of xeroderma pigmentosum group C protein regulates DNA damage recognition during nucleotide excision repair

    Get PDF
    The xeroderma pigmentosum group C (XPC) protein complex is a key factor that detects DNA damage and initiates nucleotide excision repair (NER) in mammalian cells. Although biochemical and structural studies have elucidated the interaction of XPC with damaged DNA, the mechanism of its regulation in vivo remains to be understood in more details. Here, we show that the XPC protein undergoes modification by small ubiquitin-related modifier (SUMO) proteins and the lack of this modification compromises the repair of UV-induced DNA photolesions. In the absence of SUMOylation, XPC is normally recruited to the sites with photolesions, but then immobilized profoundly by the UV-damaged DNA-binding protein (UV-DDB) complex. Since the absence of UV-DDB alleviates the NER defect caused by impaired SUMOylation of XPC, we propose that this modification is critical for functional interactions of XPC with UV-DDB, which facilitate the efficient damage handover between the two damage recognition factors and subsequent initiation of NER

    ATM Modulates the Loading of Recombination Proteins onto a Chromosomal Translocation Breakpoint Hotspot

    Get PDF
    Chromosome translocations induced by DNA damaging agents, such as ionizing radiation and certain chemotherapies, alter genetic information resulting in malignant transformation. Abrogation or loss of the ataxia-telangiectasia mutated (ATM) protein, a DNA damage signaling regulator, increases the incidence of chromosome translocations. However, how ATM protects cells from chromosome translocations is still unclear. Chromosome translocations involving the MLL gene on 11q23 are the most frequent chromosome abnormalities in secondary leukemias associated with chemotherapy employing etoposide, a topoisomerase II poison. Here we show that ATM deficiency results in the excessive binding of the DNA recombination protein RAD51 at the translocation breakpoint hotspot of 11q23 chromosome translocation after etoposide exposure. Binding of Replication protein A (RPA) and the chromatin remodeler INO80, which facilitate RAD51 loading on damaged DNA, to the hotspot were also increased by ATM deficiency. Thus, in addition to activating DNA damage signaling, ATM may avert chromosome translocations by preventing excessive loading of recombinational repair proteins onto translocation breakpoint hotspots

    Absolute quantification of DNA damage response proteins

    No full text
    Abstract Background DNA damage response (DDR) and repair are vital for safeguarding genetic information and ensuring the survival and accurate transmission of genetic material. DNA damage, such as DNA double-strand breaks (DSBs), triggers a response where sensor proteins recognize DSBs. Information is transmitted to kinases, initiating a sequence resulting in the activation of the DNA damage response and recruitment of other DDR and repair proteins to the DSB site in a highly orderly sequence. Research has traditionally focused on individual protein functions and their order, with limited quantitative analysis, prompting this study’s attempt at absolute quantification of DNA damage response and repair proteins and capturing changes in protein chromatin affinity after DNA damage through biochemical fractionation methods. Results To assess the intracellular levels of proteins involved in DDR and repair, multiple proteins associated with different functions were quantified in EPC2-hTERT cells. H2AX had the highest intracellular abundance (1.93 × 106 molecules/cell). The components of the MRN complex were present at the comparable levels: 6.89 × 104 (MRE11), 2.17 × 104 (RAD50), and 2.35 × 104 (NBS1) molecules/cell. MDC1 was present at 1.27 × 104 molecules/cell. The intracellular levels of ATM and ATR kinases were relatively low: 555 and 4860 molecules/cell, respectively. The levels of cellular proteins involved in NHEJ (53BP1: 3.03 × 104; XRCC5: 2.62 × 104; XRCC6: 5.05 × 105 molecules/cell) were more than an order of magnitude higher than that involved in HR (RAD51: 2500 molecules/cell). Furthermore, we analyzed the dynamics of MDC1 and γH2AX proteins in response to DNA damage induced by the unstable agent neocarzinostatin (NCS). Using cell biochemical fractionation, cells were collected and analyzed at different time points after NCS exposure. Results showed that γH2AX in chromatin fraction peaked at 1 h post-exposure and gradually decreased, while MDC1 translocated from the isotonic to the hypertonic fraction, peaking at 1 hour as well. The study suggests increased MDC1 affinity for chromatin through binding to γH2AX induced by DNA damage. The γH2AX-bound MDC1 (in the hypertonic fraction) to γH2AX ratio at 1 h post-exposure was 1:56.4, with lower MDC1 levels which may attributed to competition with other proteins. Conclusions The approach provided quantitative insights into protein dynamics in DNA damage response

    Nuclear pyruvate kinase M2 complex serves as a transcriptional coactivator of arylhydrocarbon receptor

    Get PDF
    Pyruvate kinase M2 (PKM2) and pyruvate dehydrogenase complex (PDC) regulate production of acetyl-CoA, which functions as an acetyl donor in diverse enzymatic reactions, including histone acetylation. However, the mechanism by which the acetyl-CoA required for histone acetylation is ensured in a gene context-dependent manner is not clear. Here we show that PKM2, the E2 subunit of PDC and histone acetyltransferase p300 constitute a complex on chromatin with arylhydrocarbon receptor (AhR), a transcription factor associated with xenobiotic metabolism. All of these factors are recruited to the enhancer of AhR-target genes, in an AhR-dependent manner. PKM2 contributes to enhancement of transcription of cytochrome P450 1A1 (CYP1A1), an AhR-target gene, acetylation at lysine 9 of histone H3 at the CYP1A1 enhancer. Site-directed mutagenesis of PKM2 indicates that this enhancement of histone acetylation requires the pyruvate kinase activity of the enzyme. Furthermore, we reveal that PDC activity is present in nuclei. Based on these findings, we propose a local acetyl-CoA production system in which PKM2 and PDC locally supply acetyl-CoA to p300 from abundant PEP for histone acetylation at the gene enhancer, and our data suggest that PKM2 sensitizes AhR-mediated detoxification in actively proliferating cells such as cancer and fetal cells

    Il piacere di imparare il piacere di insegnare

    No full text
    textabstractGenetic information encoded in chromosomal DNA is challenged by intrinsic and exogenous sources of DNA damage. DNA doublestrand breaks (DSBs) are extremely dangerous DNA lesions. RAD51 plays a central role in homologous DSB repair, by facilitating the recombination of damaged DNA with intact DNA in eukaryotes. RAD51 accumulates at sites containing DNA damage to form nuclear foci. However, the mechanism of RAD51 accumulation at sites of DNA damage is still unclear. Post-translational modifications of proteins, such as phosphorylation, acetylation and ubiquitylation play a role in the regulation of protein localization and dynamics. Recently, the covalent binding of small ubiquitin-like modifier (SUMO) proteins to target proteins, termed SUMOylation, at sites containing DNA damage has been shown to play a role in the regulation of the DNA-damage response. Here, we show that the SUMOylation E2 ligase UBC9, and E3 ligases PIAS1 and PIAS4, are required for RAD51 accretion at sites containing DNA damage in human cells. Moreover, we identified a SUMO-interacting motif (SIM) in RAD51, which is necessary for accumulation of RAD51 at sites of DNA damage. These findings suggest that the SUMO-SIM system plays an important role in DNA repair, through the regulation of RAD51 dynamics

    The CDK-PLK1 axis targets the DNA damage checkpoint sensor protein RAD9 to promote cell proliferation and tolerance to genotoxic stress

    Get PDF
    二刀流のがん増殖戦略. 京都大学プレスリリース. 2017-12-20.Genotoxic stress causes proliferating cells to activate the DNA damage checkpoint, to assist DNA damage recovery by slowing cell cycle progression. Thus, to drive proliferation, cells must tolerate DNA damage and suppress the checkpoint response. However, the mechanism underlying this negative regulation of checkpoint activation is still elusive. We show that human Cyclin-Dependent-Kinases (CDKs) target the RAD9 subunit of the 9-1-1 checkpoint clamp on Thr292, to modulate DNA damage checkpoint activation. Thr292 phosphorylation on RAD9 creates a binding site for Polo-Like-Kinase1 (PLK1), which phosphorylates RAD9 on Thr313. These CDK-PLK1-dependent phosphorylations of RAD9 suppress checkpoint activation, therefore maintaining high DNA synthesis rates during DNA replication stress. Our results suggest that CDK locally initiates a PLK1-dependent signaling response that antagonizes the ability of the DNA damage checkpoint to detect DNA damage. These findings provide a mechanism for the suppression of DNA damage checkpoint signaling, to promote cell proliferation under genotoxic stress conditions

    Heme Induces Ubiquitination and Degradation of the Transcription Factor Bach1▿

    No full text
    The transcription repressor Bach1 is a sensor and effector of heme that regulates the expression of heme oxygenase 1 and globin genes. Heme binds to Bach1, inhibiting its DNA binding activity and inducing its nuclear export. We found that hemin further induced the degradation of endogenous Bach1 in NIH 3T3 cells, murine embryonic fibroblasts, and murine erythroleukemia cells. In contrast, succinylacetone, an inhibitor of heme synthesis, caused accumulation of Bach1 in murine embryonic fibroblasts, indicating that physiological levels of heme regulated the Bach1 turnover. Polyubiquitination and rapid degradation of overexpressed Bach1 were induced by hemin treatment. HOIL-1, an ubiquitin-protein ligase which recognizes heme-bound, oxidized iron regulatory protein 2, was found to bind with Bach1 when both were overexpressed in NIH 3T3 cells. HOIL-1 stimulated the polyubiquitination of Bach1 in a purified in vitro ubiquitination system depending on the intact heme binding motifs of Bach1. Expression of dominant-negative HOIL-1 in murine erythroleukemia cells resulted in higher stability of endogenous Bach1, raising the possibility that the heme-regulated degradation involved HOIL-1 in murine erythroleukemia cells. These results suggest that heme within a cell regulates the polyubiquitination and degradation of Bach1
    corecore