4 research outputs found

    Upregulation of Claudin-7 Expression by Angiotensin II in Colonic Epithelial Cells of Mice Fed with NaCl-Depleted Diets

    No full text
    Dietary NaCl depletion increases Na+ and Cl− absorption in the colon, but the mechanisms are not fully understood. So far, we reported that the expression of claudin-7 (CLDN7), a tight junction (TJ) protein, was upregulated in the mice fed with NaCl-depleted diets, but the regulatory mechanism has not been clarified. Here, we found that angiotensin II (ANGII) increases the mRNA level of CLDN7, which was inhibited by losartan, a type 1 ANGII (AT1) receptor antagonist. Immunofluorescence measurement showed that CLDN7 is colocalized with zonula occludens-1 at the TJ in untreated and ANGII-treated cells. ANGII decreased transepithelial electrical resistance (TER) and increased permeability to C1− without affecting permeability to lucifer yellow, a paracellular flux marker. In contrast, TER was increased by CLDN7 knockdown in the absence and presence of ANGII. ANGII increased the nuclear distribution of phosphorylated p65 subunit of NF-κB, which was inhibited by losartan. The ANGII-induced elevation of CLDN7 expression was blocked by BAY 11-7082 (BAY), an NF-κB inhibitor. Luciferase reporter assay showed that ANGII increases promoter activity of CLDN7, which was inhibited by the treatment with losartan or BAY, and introduction of mutations in κB-binding motifs in the promoter. The binding of p65 on the promoter region of CLDN7 was increased by ANGII, which was inhibited by losartan and BAY in chromatin immunoprecipitation assay. Our data suggest that ANGII acts on AT1 receptor and increases paracellular permeability to Cl− mediated by the elevation of CLDN7 expression in the colon

    Regulatory mechanisms of glucose absorption in the mouse proximal small intestine during fasting and feeding

    No full text
    Abstract Fasting is known to alter the function of various organs and the mechanisms of glucose metabolism, which affect health outcomes and slow aging. However, it remains unclear how fasting and feeding affects glucose absorption function in the small intestine. We studied the effects of the fasting and feeding on glucose-induced short-circuit current (I sc ) in vitro using an Ussing chamber technique. Glucose-induced I sc by SGLT1 was observed in the ileum, but little or no I sc was observed in the jejunum in ad libitum-fed mice. However, in mice fasted for 24–48 h, in addition to the ileum, robust glucose-induced I sc was observed over time in the jejunum. The expression of SGLT1 in the brush border membranes was significantly decreased in the jejunum under fed conditions compared to 48 h fasting, as analyzed by western blotting. Additionally, when mice were fed a 60% high glucose diet for 3 days, the increase in glucose-induced I sc was observed only in the ileum, and totally suppressed in the jejunum. An increase in Na+ permeability between epithelial cells was concomitantly observed in the jejunum of fasted mice. Transepithelial glucose flux was assessed using a non-metabolizable glucose analog, 14C-methyl α-d-glucopyranoside glucose (MGP). Regardless of whether fed or fasted, no glucose diffusion mechanism was observed. Fasting increased the SGLT1-mediated MGP flux in the jejunum. In conclusion, segment-dependent up- and down-regulation mechanisms during fasting and feeding are important for efficient glucose absorption once the fast is broken. Additionally, these mechanisms may play a crucial role in the small intestine's ability to autoregulate glucose absorption, preventing acute hyperglycemia when large amounts of glucose are ingested
    corecore