17 research outputs found

    Biorisk Assessment of Medical Diagnostic Laboratories in Nigeria

    Get PDF
    Background: The aim of this study was to assess public and private medical diagnostic laboratories in Nigeria for the presence of biosafety equipment, devices, and measures. Methods: A total of 80 diagnostic laboratories in biosafety level 3 were assessed for the presence of biosafety equipment, devices, and compliance rate with biosafety practices. A detailed questionnaire and checklist was used to obtain the relevant information from enlisted laboratories. Results: The results showed the presence of an isolated unit for microbiological work, leak-proof working benches, self-closing doors, emergency exits, fire extinguisher(s), autoclaves, and hand washing sinks in 21.3%, 71.3%, 15.0%, 1.3%, 11.3%, 82.5%, and 67.5%, respectively, of all laboratories surveyed. It was observed that public diagnostic laboratories were significantly more likely to have an isolated unit for microbiological work (p = 0.001), hand washing sink (p = 0.003), and an autoclave (p ≤ 0.001) than private ones. Routine use of hand gloves, biosafety cabinet, and a first aid box was observed in 35.0%, 20.0%, and 2.5%, respectively, of all laboratories examined. Written standard operating procedures, biosafety manuals, and biohazard signs on door entrances were observed in 6.3%, 1.3%, and 3.8%, respectively, of all audited laboratories. No biosafety officer(s) or records of previous spills, or injuries and accidents, were observed in all diagnostic laboratories studied. Conclusion: In all laboratories (public and private) surveyed, marked deficiencies were observed in the area of administrative control responsible for implementing biosafety. Increased emphasis on provision of biosafety devices and compliance with standard codes of practices issued by relevant authorities is strongly advocated

    Molecular diagnostics for lassa fever at Irrua specialist teaching hospital, Nigeria: lessons learnt from two years of laboratory operation.

    Get PDF
    BACKGROUND: Lassa fever is a viral hemorrhagic fever endemic in West Africa. However, none of the hospitals in the endemic areas of Nigeria has the capacity to perform Lassa virus diagnostics. Case identification and management solely relies on non-specific clinical criteria. The Irrua Specialist Teaching Hospital (ISTH) in the central senatorial district of Edo State struggled with this challenge for many years. METHODOLOGY/PRINCIPAL FINDINGS: A laboratory for molecular diagnosis of Lassa fever, complying with basic standards of diagnostic PCR facilities, was established at ISTH in 2008. During 2009 through 2010, samples of 1,650 suspected cases were processed, of which 198 (12%) tested positive by Lassa virus RT-PCR. No remarkable demographic differences were observed between PCR-positive and negative patients. The case fatality rate for Lassa fever was 31%. Nearly two thirds of confirmed cases attended the emergency departments of ISTH. The time window for therapeutic intervention was extremely short, as 50% of the fatal cases died within 2 days of hospitalization--often before ribavirin treatment could be commenced. Fatal Lassa fever cases were older (p = 0.005), had lower body temperature (p<0.0001), and had higher creatinine (p<0.0001) and blood urea levels (p<0.0001) than survivors. Lassa fever incidence in the hospital followed a seasonal pattern with a peak between November and March. Lassa virus sequences obtained from the patients originating from Edo State formed--within lineage II--a separate clade that could be further subdivided into three clusters. CONCLUSIONS/SIGNIFICANCE: Lassa fever case management was improved at a tertiary health institution in Nigeria through establishment of a laboratory for routine diagnostics of Lassa virus. Data collected in two years of operation demonstrate that Lassa fever is a serious public health problem in Edo State and reveal new insights into the disease in hospitalized patients

    Sequencing results and schematic representation of the EKV-1 and -2 genome organization.

    No full text
    <p>(<b>A</b>) Overview of the data generated for each novel rhabdovirus. (<b>B</b>) A schematic showing the assembled genomes, consisting of the following genes: <i>nucleoprotein</i> (N), <i>phosphoprotein</i> (P), <i>matrix</i> (M), <i>U1</i>/<i>U2</i>/<i>U3</i> (uncharacterized accessory proteins), <i>glycoprotein</i> (G), and <i>polymerase</i> (L). We indicate in orange (EKV-1) and blue (EKV-2) segments of the viral genomes that could not be assembled from Illumina reads and instead Sanger sequenced. (<b>C</b>) Coverage plots of the final viral genomes.</p

    Examples of rhabdoviruses reported in Africa.

    No full text
    <p>A map depicting examples of rhabdoviruses isolated in sub-Saharan Africa. This map does not depict the current distribution of rhabdoviruses in Sub-Saharan Africa, nor is it meant as a comprehensive listing of all rhabdoviruses isolated in Africa; rather its purpose is to illustrate that many rhabdoviruses have been discovered throughout Africa over the past half-century. Country refers to the sample’s country of origin. Abbreviations: CAR, Central African Republic; DRC, Democratic Republic of Congo.</p

    Virological and clinical data for Lassa fever patients.

    No full text
    <p>Due to a variable number of missing values, the number (n) of data points that were included in the analysis is indicated with each category.</p><p>Abbreviations:</p>a<p>Patients who were discharged after recovery.</p>b<p>Patients who died during hospitalization.</p>c<p>1+, Lassa virus RT-PCR was only positive with undiluted plasma; 2+, Lassa virus RT-PCR was positive with 1/10-volume plasma, irrespective of whether the undiluted sample was positive or not.</p>#<p>p<0.01 (PCR-positive survived vs. PCR-positive died).</p
    corecore