10 research outputs found
Real-time Loss Estimation for Instrumented Buildings
Motivation. A growing number of buildings have been instrumented to measure and record
earthquake motions and to transmit these records to seismic-network data centers to be archived and
disseminated for research purposes. At the same time, sensors are growing smaller, less expensive to
install, and capable of sensing and transmitting other environmental parameters in addition to
acceleration. Finally, recently developed performance-based earthquake engineering methodologies
employ structural-response information to estimate probabilistic repair costs, repair durations, and
other metrics of seismic performance. The opportunity presents itself therefore to combine these
developments into the capability to estimate automatically in near-real-time the probabilistic seismic
performance of an instrumented building, shortly after the cessation of strong motion. We refer to
this opportunity as (near-) real-time loss estimation (RTLE).
Methodology. This report presents a methodology for RTLE for instrumented buildings. Seismic
performance is to be measured in terms of probabilistic repair cost, precise location of likely physical
damage, operability, and life-safety. The methodology uses the instrument recordings and a Bayesian
state-estimation algorithm called a particle filter to estimate the probabilistic structural response of
the system, in terms of member forces and deformations. The structural response estimate is then
used as input to component fragility functions to estimate the probabilistic damage state of structural
and nonstructural components. The probabilistic damage state can be used to direct structural
engineers to likely locations of physical damage, even if they are concealed behind architectural
finishes. The damage state is used with construction cost-estimation principles to estimate
probabilistic repair cost. It is also used as input to a quantified, fuzzy-set version of the FEMA-356
performance-level descriptions to estimate probabilistic safety and operability levels.
CUREE demonstration building. The procedure for estimating damage locations, repair costs, and
post-earthquake safety and operability is illustrated in parallel demonstrations by CUREE and
Kajima research teams. The CUREE demonstration is performed using a real 1960s-era, 7-story, nonductile
reinforced-concrete moment-frame building located in Van Nuys, California. The building is
instrumented with 16 channels at five levels: ground level, floors 2, 3, 6, and the roof. We used the
records obtained after the 1994 Northridge earthquake to hindcast performance in that earthquake.
The building is analyzed in its condition prior to the 1994 Northridge Earthquake. It is found that,
while hindcasting of the overall system performance level was excellent, prediction of detailed damage
locations was poor, implying that either actual conditions differed substantially from those shown on
the structural drawings, or inappropriate fragility functions were employed, or both. We also found
that Bayesian updating of the structural model using observed structural response above the base of
the building adds little information to the performance prediction. The reason is probably that
Real-Time Loss Estimation for Instrumented Buildings
ii
structural uncertainties have only secondary effect on performance uncertainty, compared with the
uncertainty in assembly damageability as quantified by their fragility functions. The implication is
that real-time loss estimation is not sensitive to structural uncertainties (saving costly multiple
simulations of structural response), and that real-time loss estimation does not benefit significantly
from installing measuring instruments other than those at the base of the building.
Kajima demonstration building. The Kajima demonstration is performed using a real 1960s-era
office building in Kobe, Japan. The building, a 7-story reinforced-concrete shearwall building, was not
instrumented in the 1995 Kobe earthquake, so instrument recordings are simulated. The building is
analyzed in its condition prior to the earthquake. It is found that, while hindcasting of the overall
repair cost was excellent, prediction of detailed damage locations was poor, again implying either that
as-built conditions differ substantially from those shown on structural drawings, or that
inappropriate fragility functions were used, or both. We find that the parameters of the detailed
particle filter needed significant tuning, which would be impractical in actual application. Work is
needed to prescribe values of these parameters in general.
Opportunities for implementation and further research. Because much of the cost of applying
this RTLE algorithm results from the cost of instrumentation and the effort of setting up a structural
model, the readiest application would be to instrumented buildings whose structural models are
already available, and to apply the methodology to important facilities. It would be useful to study
under what conditions RTLE would be economically justified. Two other interesting possibilities for
further study are (1) to update performance using readily observable damage; and (2) to quantify the
value of information for expensive inspections, e.g., if one inspects a connection with a modeled 50%
failure probability and finds that the connect is undamaged, is it necessary to examine one with 10%
failure probability
Citizen Science Observation of a Gamma‐Ray Glow Associated With the Initiation of a Lightning Flash
シチズンサイエンスで挑む雷の謎 --宇宙線と雷雲の相互作用は、雷の始まりに影響を与えるのか?--. 京都大学プレスリリース. 2023-07-10.Zeus also plays billiards: Citizen-supported Thundercloud Project may lead to better understanding of lightning's origins. 京都大学プレスリリース. 2023-07-12.Gamma-ray glows are observational evidence of relativistic electron acceleration due to the electric field in thunderclouds. However, it is yet to be understood whether such relativistic electrons contribute to the initiation of lightning discharges. To tackle this question, we started the citizen science “Thundercloud Project, ” where we map radiation measurements of glows from winter thunderclouds along Japan's sea coast area. We developed and deployed 58 compact gamma-ray monitors at the end of 2021. On 30 December 2021, five monitors simultaneously detected a glow with its radiation distribution horizontally extending for 2 km. The glow terminated coinciding with a lightning flash at 04:08:34 JST, which was recorded by the two radio-band lightning mapping systems, FALMA and DALMA. The initial discharges during the preliminary breakdown started above the glow, that is, in vicinity of the electron acceleration site. This result provides one example of possible connections between electron acceleration and lightning initiation