28 research outputs found

    Fyn Phosphorylates Transglutaminase 2 (Tgm2) and modulates autophagy and p53 expression in the development of diabetic kidney disease

    Get PDF
    Autophagy is involved in the development of diabetic kidney disease (DKD), the leading cause of end-stage renal disease. The Fyn tyrosine kinase (Fyn) suppresses autophagy in the muscle. However, its role in kidney autophagic processes is unclear. Here, we examined the role of Fyn kinase in autophagy in proximal renal tubules both in vivo and in vitro. Phospho-proteomic analysis revealed that transglutaminase 2 (Tgm2), a protein involved in the degradation of p53 in the autophagosome, is phosphorylated on tyrosine 369 (Y369) by Fyn. Interestingly, we found that Fyn-dependent phosphorylation of Tgm2 regulates autophagy in proximal renal tubules in vitro, and that p53 expression is decreased upon autophagy in Tgm2-knockdown proximal renal tubule cell models. Using streptozocin (STZ)-induced hyperglycemic mice, we confirmed that Fyn regulated autophagy and mediated p53 expression via Tgm2. Taken together, these data provide a molecular basis for the role of the Fyn–Tgm2–p53 axis in the development of DKD

    Enhancement of HGF-induced tubulogenesis by endothelial cell-derived GDNF.

    No full text
    Tubulogenesis, the organization of epithelial cells into tubular structures, is an essential step during renal organogenesis as well as during the regeneration process of renal tubules after injury. In the present study, endothelial cell-derived factors that modulate tubule formation were examined using an in vitro human tubulogenesis system. When human renal proximal tubular epithelial cells (RPTECs) were cultured in gels, tubular structures with lumens were induced in the presence of hepatocyte growth factor (HGF). Aquaporin 1 was localized in the apical membrane of these tubular structures, suggesting that these structures are morphologically equivalent to renal tubules in vivo. HGF-induced tubule formation was significantly enhanced when co-cultured with human umbilical vein endothelial cells (HUVECs) or in the presence of HUVEC-conditioned medium (HUVEC-CM). Co-culture with HUVECs did not induce tubular structures in the absence of HGF. A phospho-receptor tyrosine kinase array revealed that HUVEC-CM markedly enhanced phosphorylation of Ret, glial cell-derived neurotrophic factor (GDNF) receptor, in HGF-induced tubular structures compared to those without HUVEC-CM. HUVECs produced GDNF, and RPTECs expressed both Ret and GDNF family receptor alpha1 (co-receptor). HGF-induced tubule formation was significantly enhanced by addition of GDNF. Interestingly, not only HGF but also GDNF significantly induced phosphorylation of the HGF receptor, Met. These data indicate that endothelial cell-derived GDNF potentiates the tubulogenic properties of HGF and may play a critical role in the epithelial-endothelial crosstalk during renal tubulogenesis as well as tubular regeneration after injury

    Urinary Activin A is a novel biomarker reflecting renal inflammation and tubular damage in ANCA-associated vasculitis.

    No full text
    Activin A, a member of the transforming growth factor-beta superfamily, is a critical modulator of inflammation and plays a key role in controlling the cytokine cascade that drives the inflammatory response. However, the role of activin A in inflammatory kidney diseases remains unknown. To address this issue, we examined here whether activin A can be detected in the kidney and/or urine from patients with antineutrophil cytoplasmic antibody (ANCA) -associated vasculitis (AAV). Fifty-one patients who had been diagnosed with AAV and were treated in our department between November 2011 to March 2018 were included in this study. Forty-one patients had renal complications (renal AAV). Serum and urinary activin A levels were measured by enzyme-linked immunosorbent assay. Correlation of urinary activin A concentration with clinical parameters was analyzed. Urinary activin A was undetectable in healthy volunteers. In contrast, urinary activin A concentration was significantly increased in patients with renal AAV but not in those with non-renal AAV. Urinary activin A concentration decreased rapidly after immunosuppressive treatment. There was a significant correlation of urinary activin A level with urinary protein, L-FABP, and NAG. Histologic evaluation revealed that urinary activin A levels were significantly higher in patients with cellular crescentic glomeruli than in those lacking this damage. In situ hybridization demonstrated that the mRNA encoding the activin A βA subunit was undetectable in normal kidneys but accumulated in the proximal tubules and crescentic glomeruli of the kidneys of patients with renal AAV. Immunostaining showed that activin A protein also was present in the proximal tubules, crescentic glomeruli, and macrophages infiltrating into the interstitium in the kidneys of patients with renal AAV. These data suggested that urinary activin A concentration reflects renal inflammation and tubular damage in AAV and may be a useful biomarker for monitoring renal AAV

    Attenuation of renal fibrosis after unilateral ureteral obstruction in mice lacking the N-type calcium channel.

    No full text
    The N-type Ca2+ channel (Cav2.2) is distributed in sympathetic nerves that innervate the tubules, the vessels, and the juxtaglomerular granular cells of the kidney. However, the role of N-type Ca2+ channels in renal disease remains unknown. To address this issue, Cav2.2 knockout mice were utilized. Immunoreactive Cav2.2 was undetectable in normal kidneys of C57BL/6N mice, but it became positive in the interstitial S100-positive nerve fibers after unilateral ureteral obstruction (UUO). There were no significant differences in mean blood pressure, heart rate, and renal function between wild-type littermates and Cav2.2-knockout mice at baseline, as well as after UUO. Cav2.2 deficiency significantly reduced the EVG-positive fibrotic area, alpha-SMA expression, the production of type I collagen, and the hypoxic area in the obstructed kidneys. The expression of tyrosine hydroxylase, a marker for sympathetic neurons, was significantly increased in the obstructed kidneys of wild-type mice, but not in Cav2.2-knockout mice. These data suggest that increased Cav2.2 is implicated in renal nerve activation leading to the progression of renal fibrosis. Blockade of Cav2.2 might be a novel therapeutic approach for preventing renal fibrosis
    corecore