566 research outputs found
Requirement of ZO-1 for the formation of belt-like adherens junctions during epithelial cell polarization
The molecular mechanisms of how primordial adherens junctions (AJs) evolve into spatially separated belt-like AJs and tight junctions (TJs) during epithelial polarization are not well understood. Previously, we reported the establishment of ZO-1/ZO-2–deficient cultured epithelial cells (1[ko]/2[kd] cells), which lacked TJs completely. In the present study, we found that the formation of belt-like AJs was significantly delayed in 1(ko)/2(kd) cells during epithelial polarization. The activation of Rac1 upon primordial AJ formation is severely impaired in 1(ko)/2(kd) cells. Our data indicate that ZO-1 plays crucial roles not only in TJ formation, but also in the conversion from “fibroblastic” AJs to belt-like “polarized epithelial” AJs through Rac1 activation. Furthermore, to examine whether ZO-1 itself mediate belt-like AJ and TJ formation, respectively, we performed a mutational analysis of ZO-1. The requirement for ZO-1 differs between belt-like AJ and TJ formation. We propose that ZO-1 is directly involved in the establishment of two distinct junctional domains, belt-like AJs and TJs, during epithelial polarization
Continuous decrease in serum brain-derived neurotrophic factor (BDNF) levels in a neuropsychiatric syndrome of systemic lupus erythematosus patient with organic brain changes
In the present study, the authors reported on a case in neuropsychiatric syndromes of systemic lupus erythematosus (NPSLE) with irreversible organic brain changes. The authors also longitudinally investigated serum brain-derived neurotrophic factor (BDNF) levels in the patient. We found that serum BDNF levels in the NPSLE patient with irreversible organic brain change were consistently low, independent of the severity of psychiatric symptoms. Thus, the longitudinal measurement of serum BDNF levels might be useful in predicting the prognosis of NPSLE
Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells
For epithelia to function as barriers, the intercellular space must be sealed. Sealing two adjacent cells at bicellular tight junctions (bTJs) is well described with the discovery of the claudins. Yet, there are still barrier weak points at tricellular contacts, where three cells join together. In this study, we identify tricellulin, the first integral membrane protein that is concentrated at the vertically oriented TJ strands of tricellular contacts. When tricellulin expression was suppressed with RNA interference, the epithelial barrier was compromised, and tricellular contacts and bTJs were disorganized. These findings indicate the critical function of tricellulin for formation of the epithelial barrier
Disturbed hippocampal intra-network in first-episode of drug-naïve major depressive disorder
Complex networks inside the hippocampus could provide new insights into hippocampal abnormalities in various psychiatric disorders and dementia. However, evaluating intra-networks in the hippocampus using MRI is challenging. Here, we employed a high spatial resolution of conventional structural imaging and independent component analysis to investigate intra-networks structural covariance in the hippocampus. We extracted the intra-networks based on the intrinsic connectivity of each 0.9 mm isotropic voxel to every other voxel using a data-driven approach. With a total volume of 3 cc, the hippocampus contains 4115 voxels for a 0.9 mm isotropic voxel size or 375 voxels for a 2 mm isotropic voxel of high-resolution functional or diffusion tensor imaging. Therefore, the novel method presented in the current study could evaluate the hippocampal intra-networks in detail. Furthermore, we investigated the abnormality of the intra-networks in major depressive disorders. A total of 77 patients with first-episode drug-naïve major depressive disorder and 79 healthy subjects were recruited. The independent component analysis extracted seven intra-networks from hippocampal structural images, which were divided into four bilateral networks and three networks along the longitudinal axis. A significant difference was observed in the bilateral hippocampal tail network between patients with major depressive disorder and healthy subjects. In the logistic regression analysis, two bilateral networks were significant predictors of major depressive disorder, with an accuracy of 78.1%. In conclusion, we present a novel method for evaluating intra-networks in the hippocampus. One advantage of this method is that a detailed network can be estimated using conventional structural imaging. In addition, we found novel bilateral networks in the hippocampus that were disturbed in patients with major depressive disorders, and these bilateral networks could predict major depressive disorders
Gyrification patterns in first-episode, drug-naïve major depression: Associations with plasma levels of brain-derived neurotrophic factor and psychiatric symptoms
Background and objectivesCortical structural changes in major depressive disorder (MDD) are usually studied using a voxel-based morphometry approach to delineate the cortical gray matter volume. Among cortical structures, gyrification patterns are considered a relatively stable indicator. In this study, we investigated differences in gyrification patterns between MDD patients and healthy controls (HCs) and explored the association of gyrification patterns with plasma brain-derived neurotrophic factor (BDNF) levels and depressive symptoms in MDD patients.MethodsWe evaluated 79 MDD patients and 94 HCs and assessed depression severity in the patients using the 17-item Hamilton Depression Rating Scale (HAM-D). Blood samples of both groups were collected to measure plasma BDNF levels. Magnetic resonance imaging (MRI) data were obtained using three-dimensional fast-spoiled gradient-recalled acquisition. Differences in plasma BDNF levels between groups were examined using the Mann–Whitney U test. Principal component analysis and orthogonal partial least squares discriminant analysis (OPLS-DA) were conducted to investigate the gyrification patterns which were significantly different between the groups, i.e., those with variable importance in projection (VIP) scores of >1.5 and p-value < 0.05 in multiple regression analyses adjusted for age and sex. Finally, multiple regression analysis was performed on the selected gyrification patterns to examine their association with BDNF levels in the two groups and HAM-D in the patients.ResultsThere were no significant differences in plasma BDNF levels between the groups. We found that 108 (71.0%) of 152 total local gyrification indices were MDD < HC. We identified 10 disease-differentiating factors based on critical gyrification features (VIP > 1.5 and p-value adjusted for age and sex < 0.05). However, we found no significant correlations between the 10 gyrification patterns and plasma BDNF levels and no interaction with group. Moreover, no significant correlations were observed between the local gyrification indices and HAM-D total scores.ConclusionThese results suggest that abnormal early cortical neurodevelopment may mediate vulnerability to MDD, independent of plasma BDNF levels and depressive symptoms
Serum Levels of Brain-Derived Neurotrophic Factor at 4 Weeks and Response to Treatment with SSRIs
Objective It is important to predict a response to an antidepressant in early time after starting the antidepressant. We previously reported that serum brain-derived neurotrophic factor (BDNF) levels in responders to treatment with antidepressants were increased, whereas, those in nonresponders were not. Therefore, we hypothesized that the changes in serum levels of BDNF from baseline (TO) to 4 weeks (T4) after treatment with selective serotonin reuptake inhibitors (SSRIs) predict the response to the treatment at 8 weeks (T8) in depressed patients. To confirm the hypothesis, we measured serum BDNF at TO, T4, and T8 during the treatment with SSRIs (paroxetine, sertraline, and fluvoxamine). Methods One hundred fifty patients (M/F; 51/99, age; 50.4 +/- 15.1 years) met major depressive disorder (MDD) using by DSM-IV-TR enrolled in the present study. We measured serum BDNF concentrations at TO, T4, and T8 in patients with MDD treated with SSRIs. Results The changes in serum BDNF, age, sex, dose of SSRIs, and HAMD-17 score did not predict the response to SSRIs at T8. Conclusion These results suggest that the changes in serum BDNF levels from TO to T4 could not predict the subsequent responses to SSRIs at T8
- …