75 research outputs found

    Reply to: “NKT cells in liver fibrosis: Controversies or complexities”

    Get PDF

    SMAD and p38 MAPK Signaling Pathways Independently Regulate α1(I) Collagen Gene Expression in Unstimulated and Transforming Growth Factor-β-stimulated Hepatic Stellate Cells

    Get PDF
    The hepatic stellate cell (HSC) is the predominant cell type responsible for excess collagen deposition during liver fibrosis. Both transforming growth factor-beta (TGF-beta), the most potent fibrogenic cytokine for HSCs, which classically activates Smad signaling, and p38 MAPK signaling have been shown to influence collagen gene expression; however, the relative contribution and mechanisms that these two signaling pathways have in regulating collagen gene expression have not been investigated. The aim of this study was to investigate the relative roles and mechanisms of both Smad and p38 MAPK signaling in alpha1(I) collagen gene expression in HSCs. Inhibiting either p38 MAPK or Smad signaling reduced alpha1(I) collagen mRNA expression in untreated or TGF-beta-treated HSCs, and when both signaling pathways were simultaneously inhibited, alpha1(I) collagen gene expression was essentially blocked. Both signaling pathways were found to independently and additively increase alpha1(I) collagen gene expression by transcriptional mechanisms. TGF-beta treatment increased alpha1(I) collagen mRNA half-life, mediated by increased stability of alpha1(I) collagen mRNA through p38 MAPK signaling but not through Smad signaling. In conclusion, both p38 MAPK and Smad signaling independently and additively regulate alpha1(I) collagen gene expression by transcriptional activation, whereas p38 MAPK and not Smad signaling increased alpha1(I) collagen mRNA stability

    Expression of leptin receptors in hepatic sinusoidal cells

    Get PDF
    Emerging evidence has suggested a critical role of leptin in hepatic inflammation and fibrogenesis, however, the precise mechanisms underlying the profibrogenic action of leptin in the liver has not been well elucidated. Therefore, the present study was designed to investigate the expression and functions of leptin receptors (Ob-R) in hepatic sinusoidal cells. Hepatic stellate cells (HSCs), Kupffer cells and sinusoidal endothelial cells (SECs) were isolated from rat livers by in situ collagenase perfusion followed by differential centrifugation technique, and expression of Ob-Ra and Ob-Rb, short and long Ob-R isoforms, respectively, were analyzed by RT-PCR. Ob-Ra mRNA was detected ubiquitously in HSCs and SECs. In contrast, Ob-Rb was detected clearly only in SECs and Kupffer cells, but not in 7-day cultured HSCs. Indeed, tyrosine-phosphorylation of STAT-3, a downstream event of Ob-Rb signaling, was observed in SECs, but not in HSCs, 1 hr after incubation with leptin. Further, leptin increased AP-1 DNA binding activity and TGF-beta 1 mRNA levels in Kupffer cells and SECs, whereas leptin failed to increase TGF-beta 1 mRNA in HSCs. These findings indicated that SECs and Kupffer cells, but not HSCs, express functional leptin receptors, through which leptin elicits production of TGF-beta 1. It is hypothesized therefore that leptin, produced systemically from adipocytes and locally from HSCs, up-regulates TGF-beta 1 thereby facilitate tissue repairing and fibrogenesis in the sinusoidal microenvironment

    Impact of Heterogeneity of Human Peripheral Blood Monocyte Subsets on Myocardial Salvage in Patients With Primary Acute Myocardial Infarction

    Get PDF
    ObjectivesWe examined whether distinct monocyte subsets contribute in specific ways to myocardial salvage in patients with acute myocardial infarction (AMI).BackgroundRecent studies have shown that monocytes in human peripheral blood are heterogeneous.MethodsWe studied 36 patients with primary AMI. Peripheral blood sampling was performed 1, 2, 3, 4, 5, 8, and 12 days after AMI onset. Two monocyte subsets (CD14+CD16−and CD14+CD16+) were measured by flow cytometry. The extent of myocardial salvage 7 days after AMI was evaluated by cardiovascular magnetic resonance imaging as the difference between myocardium at risk (T2-weighted hyperintense lesion) and myocardial necrosis (delayed gadolinium enhancement). Cardiovascular magnetic resonance imaging was also performed 6 months after AMI.ResultsCirculating CD14+CD16−and CD14+CD16+monocytes increased in AMI patients, peaking on days 3 and 5 after onset, respectively. Importantly, the peak levels of CD14+CD16−monocytes, but not those of CD14+CD16+monocytes, were significantly negatively associated with the extent of myocardial salvage. We also found that the peak levels of CD14+CD16−monocytes, but not those of CD14+CD16+monocytes, were negatively correlated with recovery of left ventricular ejection fraction 6 months after infarction.ConclusionsThe peak levels of CD14+CD16−monocytes affect both the extent of myocardial salvage and the recovery of left ventricular function after AMI, indicating that the manipulation of monocyte heterogeneity could be a novel therapeutic target for salvaging ischemic damage
    corecore