72 research outputs found

    Electromagnetic emission from axionic clouds and the quenching of superradiant instabilities

    Full text link
    The nature of dark matter is one of the longest-standing puzzles in science. Axions or axion-like particles are a key possibility, and arise in mechanisms to solve the strong CP problem but also in low-energy limits of string theory. Extensive experimental and observational efforts are actively looking for `axionic' imprints. Independently on their nature, their abundance, and on their contribution to the dark matter problem, axions form dense clouds around spinning black holes, grown by superradiant mechanisms. It was recently suggested that once couplings to photons are considered, an exponential (quantum) stimulated emission of photons ensues at large enough axion number. Here we solve numerically the classical problem in different setups. We show that laser-like emission from clouds exists at the classical level, and we provide the first quantitative description of the problem.Comment: 6 pages, RevTex4. v2: Overall improvement. Accepted for publication in Physical Review Letter

    Axionic instabilities and new black hole solutions

    Get PDF
    The coupling between scalar and vector fields has a long and interesting history. Axions are one key possibility to solve the strong CP problem and axion-like particles could be one solution to the dark matter puzzle. Given the nature of the coupling, and the universality of free fall, nontrivial important effects are expected in regions where gravity is strong. Here, we show that i. A background EM field induces an axionic instability in flat space, for large enough electric fields. Conversely, a homogeneous harmonic axion field induces an instability in the Maxwell sector. When carried over to curved spacetime, this phenomena translates into generic instabilities of charged black holes (BHs). ii. In the presence of charge, BH uniqueness results are lost. We find solutions which are small deformations of the Kerr-Newman geometry and hairy stationary solutions without angular momentum, which are `dragged' by the axion. Axion fields must exist around spinning BHs if these are immersed in external magnetic fields. The axion profile can be obtained perturbatively from the electro-vacuum solution derived by Wald. iii. Ultralight axions trigger superradiant instabilities of spinning BHs and form an axionic cloud in the exterior geometry. The superradiant growth can be interrupted or suppressed through axionic or scalar couplings to EM. These couplings lead to periodic bursts of light, which occur throughout the history of energy extraction from the BH. We provide numerical and simple analytical estimates for the rates of these processes. iv. Finally, we discuss how plasma effects can affect the evolution of superradiant instabilities.Comment: 28 pages, RevTeX4. v2: overall improvements, typos corrected; version to appear in Physical Review

    Piercing of a solitonic boson star by a black hole

    Full text link
    Recently, the piercing of a mini boson star by a black hole was studied, with tidal capture and the discovery of a "gravitational atom" being reported ( arXiv:2206.00021 [gr-qc] ). Building on this research, we extend the study by including a hexic solitonic potential and explore the piercing of a solitonic boson star by a black hole. Notably, the solitonic boson star can reach higher compactness, which one might expect could alter the dynamics in this context. Our findings suggest that even when the black hole's size approaches the test particle limit, the solitonic boson star is easily captured by the black hole due to an extreme tidal capture process. Regardless of the black hole initial mass and velocity, our results indicate that over 85% of the boson star material is accreted. Thus, the self-interaction does not alter the qualitative behavior of the system.Comment: 11 pages, 11 figures, revised to match the published versio
    • …
    corecore