24 research outputs found

    On Benzofuroindole Analogues as Smooth Muscle Relaxants

    Get PDF
    At least two laboratories have independently reported the synthesis of benzofuroindole compounds having potential therapeutic implications in many disease states including those that involve smooth muscle hyperactivity. Through a series of in vitro screenings, they demonstrated the efficacy (and selectivity) of these compounds to potentiate large conductance calcium- (Ca2+-) activated K+ (BKCa) channels, by far, the most characterized of all Ca2+-dependent K+ channels. Interestingly, promising benzofuroindole derivatives such as compound 7 (10H-benzo[4,5]furo[3,2-b]indole) and compound 22 (4-chloro-7-trifluoromethyl-10H-benzo[4,5]furo[3,2-b]indole-1-carboxylic acid) both exhibited high bladder (versus aorta) selectivity, making them attractive alternative treatments for bladder overactivity. In recent reports, compound 22 (LDD175 or TBIC) also showed inhibition of ileum and uterine contractions, indicating multiple target tissues, which is not surprising as BKCa channels are ubiquitously expressed in the animal and human tissues. In this paper, the authors discuss the value of benzofuroindole compounds and the challenges that need to be overcome if they were considered as smooth muscle relaxants

    Updates on the Use of Natural Treatments for Attention-Deficit Hyperactivity Disorder (ADHD)

    Get PDF
    Attention-deficit/hyperactivity disorder (ADHD) is the most common neurodevelopmental disorder of childhood characterized by the three core symptoms of hyperactivity, impulsiveness, and sustained inattention. While the etiology of ADHD remains unknown, several studies suggest ADHD pathophysiology to involve frontal network abnormality and dysregulation of catecholaminergic and dopaminergic functions. Stimulants, which are structurally similar to endogenous catecholamines, are the most commonly prescribed drugs for treatment of ADHD, but are classified as Schedule II based on the Controlled Substances Act due to high likelihood for diversion and abuse. Non-stimulant medications, as well as antidepressants, have also been used in ADHD treatment but have been found to be inferior to stimulant interventions and to cause intolerable side effects. The search for safer yet effective ADHD treatments led to a growing interest in natural medicines and a host of other complementary and alternative treatments for ADHD. While the use of these therapies is well documented, not much is known about their safety and efficacy. In this chapter, we describe current evidence-based complementary and alternative therapies for ADHD, focusing on nutritional and botanical agents, and provide details on the performance of these agents in clinical trials. Here, we discuss the rationale for the use of natural products for ADHD, mention the potential mechanisms of action of these treatments, and highlight safety and efficacy issues associated with the use of these treatments. In conclusion, we give an exhaustive update on the use of nutritional and botanical medicines as complementary and alternative ADHD therapies for ADHD, which could potentially provide important information on the efficacy and safety of these types of interventions

    Reinforcing effects of methamphetamine in an animal model of Attention-Deficit/Hyperactivity Disorder-the Spontaneously Hypertensive Rat

    Get PDF
    Substrains of the Spontaneously Hypertensive rat (SHR), a putative animal model of Attention-Deficit/Hyperactivity Disorder (ADHD), have demonstrated increased sensitivity to many drugs of abuse, including psychostimulants. Therefore, it was suggested that studies in SHR may help elucidate ADHD and comorbidity with substance use disorder (SUD). However, the drug intake profile of the SHR in the most relevant animal model of drug addiction, the self-administration (SA) test, and its response on the conditioned place preference (CPP) paradigm are not yet determined. In the present study, we employed SA and CPP tests to investigate the reinforcing effects of the psychostimulant methamphetamine in an SHR substrain obtained from Charles River, Japan (SHR/NCrlCrlj). Concurrent tests were also performed in Wistar rats, the strain representing "normal" heterogeneous population. To address if the presence of ADHD behaviors further increases sensitivity to the rewarding effect of methamphetamine during adolescence, a critical period for the onset of drug abuse, CPP tests were especially conducted in adolescent Wistar and SHR/NCrlCrlj. We found that the SHR/NCrlCrlj also acquired methamphetamine SA and CPP, indicating reinforcing effects of methamphetamine in this ADHD animal model. However, we did not observe increased responsiveness of the SHR/NCrlCrlj to methamphetamine in both SA and CPP assays. This indicates that the reinforcing effects of methamphetamine may be similar in strains and that the SHR/NCrlCrlj may not adequately model ADHD and increased sensitivity to methamphetamine

    Granulocyte-colony stimulating factor and umbilical cord blood cell transplantation: Synergistic therapies for the treatment of traumatic brain injury

    No full text
    Traumatic brain injury (TBI) is now characterized as a progressive, degenerative disease and continues to stand as a prevalent cause of death and disability. The pathophysiology of TBI is complex, with a variety of secondary cell death pathways occurring which may persist chronically following the initial cerebral insult. Current therapeutic options for TBI are minimal, with surgical intervention or rehabilitation therapy existing as the only viable treatments. Considering the success of stem-cell therapies in various other neurological diseases, their use has been proposed as a potential potent therapy for patients suffering TBI. Moreover, stem cells are highly amenable to adjunctive use with other therapies, providing an opportunity to overcome the inherent limitations of using a single therapeutic agent. Our research has verified this additive potential by demonstrating the efficacy of co-delivering human umbilical cord blood (hUCB) cells with granulocyte-colony stimulating factor (G-CSF) in a murine model of TBI, providing encouraging results which support the potential of this approach to treat patients suffering from TBI. These findings justify ongoing research toward uncovering the mechanisms which underlie the functional improvements exhibited by hUCB + G-CSF combination therapy, thereby facilitating its safe and effect transition into the clinic. This paper is a review article. Referred literature in this paper has been listed in the reference section. The datasets supporting the conclusions of this article are available online by searching various databases, including PubMed. Some original points in this article come from the laboratory practice in our research center and the authors' experiences

    Chemogenetic approach to model hypofrontality

    No full text

    Psychostimulants affect dopamine transmission through both dopamine transporter-dependent and independent mechanisms

    No full text
    The precise mechanisms by which cocaine and amphetamine-like psychostimulants exert their reinforcing effects are not yet fully defined. It is widely believed, however, that these drugs produce their effects by enhancing dopamine neurotransmission in the brain, especially in limbic areas such as the nucleus accumbens, by inducing dopamine transporter-mediated reverse transport and/or blocking dopamine reuptake though the dopamine transporter. Here, we present the evidence that aside from dopamine transporter, non-dopamine transporter-mediated mechanisms also participate in psychostimulant-induced dopamine release and contribute to the behavioral effects of these drugs, such as locomotor activation and reward. Accordingly, psychostimulants could increase norepinephrine release in the prefrontal cortex, the latter then alters the firing pattern of dopamine neurons resulting in changes in action potential-dependent dopamine release. These alterations would further affect the temporal pattern of dopamine release in the nucleus accumbens, thereby modifying information processing in that area. Hence, a synaptic input to a nucleus accumbens neuron may be enhanced or inhibited by dopamine depending on its temporal relationship to dopamine release. Specific temporal patterns of dopamine release may also be required for certain forms of synaptic plasticity in the nucleus accumbens. Together, these effects induced by psychostimulants, mediated through a non-dopamine transporter-mediated mechanism involving norepinephrine and the prefrontal cortex, may also contribute importantly to the reinforcing properties of these drugs

    Droxidopa alters dopamine neuron and prefrontal cortex activity and improves attention-deficit/hyperactivity disorder-like behaviors in rats

    No full text
    Finding alternative treatments for attention-deficit/hyperactivity disorder (ADHD) is crucial given the safety and efficacy problems of current ADHD medications. Droxidopa, also known as L-threo-dihydroxyphenylserine (L-DOPS), is a norepinephrine prodrug that enhances brain norepinephrine and dopamine levels. In this study, we used electrophysiological tests to examine effects of L-DOPS on the prefrontal cortex (PFC) and dopamine neurons in the ventral tegmental area. We also conducted behavioral tests to assess L-DOPS\u27 effects on ADHD-like behaviors in rats. In chloral hydrate-anesthetized rats, PFC local field potentials oscillated between the active, depolarized UP state and the hyperpolarized DOWN state. Mimicking the effect of d-amphetamine, L-DOPS, given after the peripheral amino acid decarboxylase inhibitor, benserazide (BZ), increased the amount of time the PFC spent in the UP state, indicating an excitatory effect of L-DOPS on PFC neurons. Like d-amphetamine, L-DOPS also inhibited dopamine neurons, an effect significantly reversed by the D2-like receptor antagonist raclopride. In the behavioral tests, BZ + L-DOPS improved hyperactivity, inattention and impulsive action of the adolescent spontaneously hypertensive rat (SHR/NCrl), well-validated animal model of the combined type of ADHD. BZ + L-DOPS also reduced impulsive choice and impulsive action of Wistar rats, but did not ameliorate the inattentiveness of Wistar Kyoto rats (WKY/NCrl), proposed model of the ADHD-predominantly inattentive type. In conclusion, L-DOPS produced effects on the PFC and dopamine neurons characteristic of drugs used to treat ADHD. BZ + L-DOPS ameliorated ADHD-like behaviors in rats suggesting its potential as an alternative ADHD treatment

    Natural Product-Derived Treatments for Attention-Deficit/Hyperactivity Disorder: Safety, Efficacy, and Therapeutic Potential of Combination Therapy

    No full text
    Typical treatment plans for attention-deficit/hyperactivity disorder (ADHD) utilize nonpharmacological (behavioral/psychosocial) and/or pharmacological interventions. Limited accessibility to behavioral therapies and concerns over adverse effects of pharmacological treatments prompted research for alternative ADHD therapies such as natural product-derived treatments and nutritional supplements. In this study, we reviewed the herbal preparations and nutritional supplements evaluated in clinical studies as potential ADHD treatments and discussed their performance with regard to safety and efficacy in clinical trials. We also discussed some evidence suggesting that adjunct treatment of these agents (with another botanical agent or pharmacological ADHD treatments) may be a promising approach to treat ADHD. The analysis indicated mixed findings with regard to efficacy of natural product-derived ADHD interventions. Nevertheless, these treatments were considered as a “safer” approach than conventional ADHD medications. More comprehensive and appropriately controlled clinical studies are required to fully ascertain efficacy and safety of natural product-derived ADHD treatments. Studies that replicate encouraging findings on the efficacy of combining botanical agents and nutritional supplements with other natural product-derived therapies and widely used ADHD medications are also warranted. In conclusion, the risk-benefit balance of natural product-derived ADHD treatments should be carefully monitored when used as standalone treatment or when combined with other conventional ADHD treatments
    corecore