5 research outputs found

    A Retrospective Study of Renal Growth Changes after Proton Beam Therapy for Pediatric Malignant Tumor

    No full text
    The purpose of this study was to analyze renal late effects after proton beam therapy (PBT) for pediatric malignant tumors. A retrospective study was performed in 11 patients under 8 years of age who received PBT between 2013 and 2018. The kidney was exposed in irradiation of the primary lesion in all cases. Kidney volume and contour were measured on CT or MRI. Dose volume was calculated with a treatment-planning system. The median follow-up was 24 months (range, 11–57 months). In irradiated kidneys and control contralateral kidneys, the median volume changes were −5.63 (−20.54 to 7.20) and 5.23 (−2.01 to 16.73) mL/year; and the median % volume changes at 1 year were −8.55% (−47.52 to 15.51%) and 9.53% (−2.13 to 38.78%), respectively. The median relative volume change for irradiated kidneys at 1 year was −16.42% (−52.21 to −4.53%) relative to control kidneys. Kidneys irradiated with doses of 10, 20, 30, 40, and 50 GyE had volume reductions of 0.16%, 0.90%, 1.24%, 2.34%, and 8.2% per irradiated volume, respectively. The larger the irradiated volume, the greater the kidney volume was lost. Volume reduction was much greater in patients aged 4–7 years than in those aged 2–3 years. The results suggest that kidneys exposed to PBT in treatment of pediatric malignant tumor show continuous atrophy in follow-up. The degree of atrophy is increased with a higher radiation dose, greater irradiated volume, and older age. However, with growth and maturation, the contralateral kidney becomes progressively larger and is less affected by radiation

    A Retrospective Study of Renal Growth Changes after Proton Beam Therapy for Pediatric Malignant Tumor

    No full text
    The purpose of this study was to analyze renal late effects after proton beam therapy (PBT) for pediatric malignant tumors. A retrospective study was performed in 11 patients under 8 years of age who received PBT between 2013 and 2018. The kidney was exposed in irradiation of the primary lesion in all cases. Kidney volume and contour were measured on CT or MRI. Dose volume was calculated with a treatment-planning system. The median follow-up was 24 months (range, 11–57 months). In irradiated kidneys and control contralateral kidneys, the median volume changes were −5.63 (−20.54 to 7.20) and 5.23 (−2.01 to 16.73) mL/year; and the median % volume changes at 1 year were −8.55% (−47.52 to 15.51%) and 9.53% (−2.13 to 38.78%), respectively. The median relative volume change for irradiated kidneys at 1 year was −16.42% (−52.21 to −4.53%) relative to control kidneys. Kidneys irradiated with doses of 10, 20, 30, 40, and 50 GyE had volume reductions of 0.16%, 0.90%, 1.24%, 2.34%, and 8.2% per irradiated volume, respectively. The larger the irradiated volume, the greater the kidney volume was lost. Volume reduction was much greater in patients aged 4–7 years than in those aged 2–3 years. The results suggest that kidneys exposed to PBT in treatment of pediatric malignant tumor show continuous atrophy in follow-up. The degree of atrophy is increased with a higher radiation dose, greater irradiated volume, and older age. However, with growth and maturation, the contralateral kidney becomes progressively larger and is less affected by radiation

    Sequence database of 1172 T-DNA insertion sites in Arabidopsis activation-tagging lines that showed phenotypes in T1 generation

    No full text
    Plant genomic resources harbouring gain-of-function mutations remain rare, even though this type of mutation is believed to be one of the most useful for elucidating the function of unknown genes that have redundant partners in the genome. An activation-tagging T-DNA was introduced into the genome of Arabidopsis creating 55 431 independent transformed lines. Of these T1 lines, 1262 showed phenotypes different from those of wild-type plants. We called these lines 'AT1Ps' (activation T1 putants). The phenotypes observed include abnormalities in morphology, growth rate, plant colour, flowering time and fertility. Similar phenotypes re-appeared either in dominant or semi-dominant fashion in 17% of 177 AT2P plants tested. Plasmid rescue or an adaptor-PCR method was used to identify 1172 independent genomic loci of T-DNA integration sites in the AT1P plants. Mapping of the integration sites revealed that the chromosomal distribution of these sites is similar to that observed in conventional T-DNA knock-out lines, except that the intragenic type of integration is slightly lower (27%) in the AT1P plants compared to that observed in other random knock-out populations (30-35%). Ten AT2P lines that showed dominant phenotypes were chosen to monitor expression levels of genes adjacent to the T-DNA integration sites by RT-PCR. Activation was observed in 7 out of 17 of the adjacent genes detected. Genes located up to 8.2 kb away from the enhancer sequence were activated. One of the seven activated genes was located close to the left-border sequence of the T-DNA, having an estimated distance of 5.7 kb from the enhancer. Surprisingly, one gene, the first ATG of which is located 12 kb away from the enhancer, showed reduced mRNA accumulation in the tagged line. Application of the database generated to Arabidopsis functional genomics research is discussed. The sequence database of the 1172 loci from the AT1P plants is available (http://pfgweb.gsc.riken.go.jp/index. html).publishersversionPeer reviewe
    corecore