35 research outputs found

    Decomposition and Interleaving for Variance Reduction of Post-click Metrics

    Full text link
    In this study, we propose an efficient method for comparing the post-click metric (e.g., dwell time and conversion rate) of multiple rankings in online experiments. The proposed method involves (1) the decomposition of the post-click metric measurement of a ranking into a click model estimation and a post-click metric measurement of each item in the ranking, and (2) interleaving of multiple rankings to produce a single ranking that preferentially exposes items possessing a high population variance. The decomposition of the post-click metric measurement enables the free layout of items in a ranking and focuses on the measurement of the post-click metric of each item in the multiple rankings. The interleaving of multiple rankings reduces the sample variance of the items possessing a high population variance by optimizing a ranking to be presented to the users so that those items received more samples of the post-click metric. In addition, we provide a proof that the proposed method leads to the minimization of the evaluation error in the ranking comparison and propose two practical techniques to stabilize the online experiment. We performed a comprehensive simulation experiment and a real service setting experiment. The experimental results revealed that (1) the proposed method outperformed existing methods in terms of efficiency and accuracy, and the performance was especially remarkable when the input rankings shared many items, and (2) the two stabilization techniques successfully improved the evaluation accuracy and efficiency.Comment: The 7th ACM SIGIR International Conference on the Theory of Information Retrieval (ICTIR2021

    The Effect of News Article Quality on Ad Consumption

    Full text link
    Practical news feed platforms generate a hybrid list of news articles and advertising items (e.g., products, services, or information) and many platforms optimize the position of news articles and advertisements independently. However, they should be arranged with careful consideration of each other, as we show in this study, since user behaviors toward advertisements are significantly affected by the news articles. This paper investigates the effect of news articles on users' ad consumption and shows the dependency between news and ad effectiveness. We conducted a service log analysis and showed that sessions with high-quality news article exposure had more ad consumption than those with low-quality news article exposure. Based on this result, we hypothesized that exposure to high-quality articles will lead to a high ad consumption rate. Thus, we conducted million-scale A/B testing to investigate the effect of high-quality articles on ad consumption, in which we prioritized high-quality articles in the ranking for the treatment group. The A/B test showed that the treatment group's ad consumption, such as the number of clicks, conversions, and sales, increased significantly while the number of article clicks decreased. We also found that users who prefer a social or economic topic had more ad consumption by stratified analysis. These insights regarding news articles and advertisements will help optimize news and ad effectiveness in rankings considering their mutual influence.Comment: 30th ACM International Conference on Information and Knowledge Management (CIKM2021

    Theoretical Analysis on the Efficiency of Interleaved Comparisons

    Full text link
    This study presents a theoretical analysis on the efficiency of interleaving, an efficient online evaluation method for rankings. Although interleaving has already been applied to production systems, the source of its high efficiency has not been clarified in the literature. Therefore, this study presents a theoretical analysis on the efficiency of interleaving methods. We begin by designing a simple interleaving method similar to ordinary interleaving methods. Then, we explore a condition under which the interleaving method is more efficient than A/B testing and find that this is the case when users leave the ranking depending on the item's relevance, a typical assumption made in click models. Finally, we perform experiments based on numerical analysis and user simulation, demonstrating that the theoretical results are consistent with the empirical results.Comment: The 45th European Conference on Information Retrieval (ECIR2023

    Development of Grousers with a Tactile Sensor for Wheels of Lunar Exploration Rovers to Measure Sinkage

    Get PDF
    This paper presents a grouser developed for the wheels of lunar exploration rovers to measure sinkage. The wheels, which are intended to traverse loose soil such as lunar regolith, contain grousers that transfer thrust to the wheels and thus to the body of the rover. The interaction between the wheel (with grousers) and the loose soil can be described using a kinematic model. When traversing loose soil, the wheel sinks into the soil, which necessitates knowledge of the entrance angle needed in order to avoid this problem. If the entrance angle is known, the sinkage can be measured in real time before adverse conditions occur. Because of the importance and usefulness of detecting the entrance angle of the wheel, we herein propose a grouser with an embedded tactile sensor. A strain gauge on the surface of the grousers serves as the tactile sensor. In order to confirm the precision of the proposed grouser, we have performed tests on a rigid surface and loose soil surfaces.ArticleINTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS. 11:49 (2014)journal articl

    Autonomous Navigation, Guidance and Control of Small Electric Helicopter

    Get PDF
    In this study, we design an autonomous navigation, guidance and control system for a small electric helicopter. Only small, light-weight, and inaccurate sensors can be used for the control of small helicopters because of the payload limitation. To overcome the problem of inaccurate sensors, a composite navigation system is designed. The designed navigation system enables us to precisely obtain the position and velocity of the helicopter. A guidance and control system is designed for stabilizing the helicopter at an arbitrary point in three-dimensional space. In particular, a novel and simple guidance system is designed using the combination of optimal control theory and quaternion kinematics. The designs of the study are validated experimentally, and the experimental results verify the efficiency of our navigation, guidance and control system for a small electric helicopter.ArticleINTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS. 10:54 (2013)journal articl

    Experimental investigation of relationship between bearing capacity and vibration parameters for planetary exploration legged rovers

    No full text
    Abstract In recent years, robots with leg mechanisms have received considerable attention as high-running planetary exploration rovers. Rovers undertaking planetary exploration require outstanding running performance to travel on loose ground on which they mostly slip and hardly move forward. The movement of the rover easily deforms the surface of loose ground. This problem can be solved by increasing the bearing capacity. The bearing capacity, the resistance force exerted on the rover legs when they make contact with the ground, needs to be sufficiently large to prevent legged rovers from slipping on loose ground. The bearing capacity can be increased by compaction of the ground by imparting vibrations. This study investigates the relationship between the bearing capacity in the horizontal direction and vibration parameters because this relationship offers valuable information for improving the running performance of legged rovers. First, we investigated the effect of changing the vibration parameters on the bearing capacity. Our experimental results show that the bearing capacity is related to vibration acceleration. These results suggest that the bearing capacity can be estimated from the vibration acceleration. Next, the frequency and amplitude were compared as vibration parameters to devise an efficient method for increasing the bearing capacity. The results of these experiments showed that high-amplitude vibrations increase the bearing capacity to a greater extent than high-frequency vibrations. The reason is that high-amplitude vibrations generate larger additional vibrations by the collision between the rod and the ground than high-frequency vibrations. This knowledge is valuable for selecting a suitable vibration that can efficiently increase the bearing capacity. This study suggests a method of facilitating further planetary exploration using legged rovers

    Measuring the Normal Stress Distribution Acting on a Locked-Wheel of Push–Pull Locomotion Rovers via a Wheel Sensor System

    No full text
    The resistance force generated when the locked-wheel acts on the soil is critical for deciding the traveling performance of push–pull locomotion. The resistance force depends on the tangential force of the sliding soil wedge beneath the wheel, and the tangential force depends on the forces of the soil and the wheel perpendicular to the tangential direction. Hence, the normal stress distribution of the locked-wheel can affect the resistance force. Previous studies indicated different insights that describe either a uniform or non-uniform shape of the normal stress distribution. The distribution of the locked-wheel still needs to be examined experimentally. This study measured the normal stress distribution using the wheel sensor system, and the variation of the contact area and slip surface beneath the wheel were also observed in PIV analysis. Those results showed that the normal stress distribution was non-uniform along the wheel contact area, and the change of the distribution was confirmed with the change of the contact area and slip surface. Then, the resistance force calculated by a preliminary model based on the measured data was compared with the total resistance force of the wheel measured by a separate sensor. This comparison provided a theoretical consideration for the measured data
    corecore