43 research outputs found

    Phase stability of long-period stacking structures in Mg-Y-Zn: A first-principles study

    Get PDF
    The phase stability of the long periodic structures in Mg has been investigated at finite temperature by means of first-principles calculations. Free-energy calculation, including the lattice vibration effect, clearly reveals that 14H and 18R type long periodic structures become more stable than 2H-Mg. Furthermore, the stacking fault energies from a structure of ABA (hcp) to ABC (fcc) were calculated for the isotropic lattice variation. We found that the stacking fault energy decreased by lattice expansion and went to nearly zero upon 10% expansion of the lattice. These two calculated results provide important information about the formation of long periodic stacking “ordered” (LPSO) structures in a Mg-Y-Zn system. It has been suggested that the substituted large atoms and temperature effect cooperatively generate a metastable long periodic stacking faults structure that precede LPSO formation

    Deposition of hydroxyapatite on SiC nanotubes in simulated body fluid

    Get PDF
    SiC nanotubes can become candidate reinforcement materials for dental and orthopedic implants due to their light weight and excellent mechanical properties. However, the development of bioactive SiC materials has not been reported. In this study, hydroxyapatites were found on SiC nanotubes treated with NaOH and subsequently HCl solution after soaking in simulated body fluid. On the other hand, hydroxyapatites did not deposit on as-received SiC nanotubes, the SiC nanotubes with NH4OH solution treatment and SiC bulk materials with NaOH and subsequently HCl solution treatment. Therefore, we succeeded in the development of bioactive SiC nanotubes by downsizing SiC materials to nanometer size and treating with NaOH and subsequently HCl solutions for the first time

    First-principles study of electronic and optical properties of lead-free double perovskites Cs2NaBX6 (B = Sb, Bi; X = Cl, Br, I)

    Get PDF
    Organolead halide perovskite is regarded as the most promising light-harvesting material for next-generation solar cells; however, the intrinsic instability and toxicity of lead are still of great concern. Bismuth is ecofriendly and has electronic properties similar to those of lead, which has gradually attracted interest for optoelectronic applications. However, the valence state of bismuth is different from that of lead, eliminating the possibility of replacing lead by bismuth in organolead halide perovskites. To address this matter, one feasible strategy is to construct B-site double perovskites by the combination of Bi3+ and B+ in 1:1 ratio. In this work, lead-free halide double perovskites of the form Cs2NaBX6 (B = Sb, Bi; X = Cl, Br, I) were investigated by first-principles calculations. The electronic properties, optical absorption coefficients, and thermodynamic stability of these compounds were investigated to ascertain their potential application in solar energy conversion. The results provide theoretical support for the exploration of lead-free perovskite materials in potential optoelectronic applications

    Effect of halogen ions on low thermal conductivity of cesium halide perovskite

    Get PDF
    The lattice dynamics of CsSnX3 (X = Cl, Br, and I) and CsPbI3, which are low-thermal-conductivity materials, are investigated using first-principles phonon calculations. Because of the strong lattice anharmonicity and the accompanying instability of high-temperature cubic phases, the self-consistent phonon theory, which can incorporate the effect of lattice anharmonicity at a mean-field level, is applied in this study. The calculated lattice thermal conductivity reproduced a low thermal conductivity, as shown experimentally, owing to the short phonon lifetime due to the incoherent scattering contribution of Cs atoms. The halogen ion dependence on thermal conductivity reveals that CsSnCl3 exhibits an anomalous lattice thermal conductivity that is as low as that of CsSnBr3. This indicates that the lattice dynamics cannot be explained merely in terms of the atomic mass of the compounds. The low thermal conductivity of CsSnCl3 is caused by the exceptionally short phonon lifetime; further, a bonding analysis suggests that covalent bonding contributes significantly to the unusual anharmonicity of CsSnCl3

    Thermodynamic assessment of Fe–Ti–S ternary phase diagram

    Get PDF
    A thermodynamic analysis of the Fe-Ti-S ternary system was performed by incorporating first-principles calculations into the calculation of phase diagrams (CALPHAD) method. To evaluate the Gibbs energy, the Debye-GrĂĽneisen model was applied for some sulfides of the Ti-S binary system. In addition, the cluster expansion and cluster variation methods were used for the solid solution phases in the Ti-S binary and (Fe,Ti)S phases. The calculated Ti-S binary phase diagram showed good agreement with the experimental results. The very low solubility of the Ti solid solution in the Ti-S system, as reported by Murray, agreed well with our calculated results. A binodal phase decomposition of the liquid phase was expected in the S-rich region. The Gibbs energy curve of (Fe,Ti)S between FeS and TiS was found to be convex downward. This is characteristic of an isomorphic solid solution, attributed to the attractive interaction between Fe and Ti in (Fe,Ti)S. The vertical phase diagram between FeS and TiS, obtained using the thermodynamic database, was in good agreement with the experimental results of Mitsui et al. The solubility products of (Fe,Ti)S have been experimentally estimated previously. The calculated solubility product agreed with the experimental value of TiS

    Mixed Sn–Ge Perovskite for Enhanced Perovskite Solar Cell Performance in Air

    Get PDF
    Lead-based perovskite solar cells have gained ground in recent years, showing efficiency as high as 20%, which is on par with that of silicon solar cells. However, the toxicity of lead makes it a nonideal candidate for use in solar cells. Alternatively, tin-based perovskites have been proposed because of their nontoxic nature and abundance. Unfortunately, these solar cells suffer from low efficiency and stability. Here, we propose a new type of perovskite material based on mixed tin and germanium. The material showed a band gap around 1.4–1.5 eV as measured from photoacoustic spectroscopy, which is ideal from the perspective of solar cells. In a solar cell device with inverted planar structure, pure tin perovskite solar cell showed a moderate efficiency of 3.31%. With 5% doping of germanium into the perovskite, the efficiency improved up to 4.48% (6.90% after 72 h) when measured in air without encapsulation

    Development of Organo-Dispersible Graphene Oxide via Pseudo-Surface Modification for Thermally Conductive Green Polymer Composites

    Get PDF
    Graphene has attracted lots of researchers attention because of its remarkable conductivity in both electrically and thermally. However, it has poor dispersibility in organic solvents which limited its applications. Polymers with aromatic end group which act as an intercalator were prepared by ring-opening polymerization with ε-caprolactone by utilizing 1-naphthalene methanol (1-NM) as an initiator. These intercalators will exist between graphene oxide (GO) sheets to prevent aggregation via interactions. The attachment of 1-NM on polymer chains was supported by ultraviolet–visible spectra, size exclusion chromatography profiles, and 1H nuclear magnetic resonance spectra. Exfoliated structured functionalized GO (fGO)/polycaprolactone (PCL) (synthesized fGO) nanocomposites that dispersed well in acetone, chloroform, N,N-dimethylformamide, dimethyl sulfoxide, tetrahydrofuran, and toluene were successfully synthesized. This agreed well with the enlarged interlayer spacing in the optimized fGO as compared to that of GO from density functional theory simulations using the DMol3 module that implemented in the Materials Studio 6.0. Furthermore, its potential to be applied as green electronics in electronics, aerospace, and automotive industries was presented, by trailering the thermal conductivity enhancement from the incorporation of fGO/PCL with commercialized biodegradable polymers, PCL, and poly[(R)-3-hydroxybutyric acid]
    corecore