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Abstract
A thermodynamic analysis of the Fe-Ti-S ternary system was performed by incorporating first-

principles calculations into the calculation of phase diagrams (CALPHAD) method. To evaluate the 

Gibbs energy, the Debye-Grüneisen model was applied for some sulfides of the Ti-S binary system. 

In addition, the cluster expansion and cluster variation methods were used for the solid solution 

phases in the Ti-S binary and (Fe,Ti)S phases. The calculated Ti-S binary phase diagram showed 

good agreement with the experimental results. The very low solubility of the Ti solid solution in the 

Ti-S system, as reported by Murray, agreed well with our calculated results. A binodal phase 

decomposition of the liquid phase was expected in the S-rich region. The Gibbs energy curve of 

(Fe,Ti)S between FeS and TiS was found to be convex downward. This is characteristic of an 

isomorphic solid solution, attributed to the attractive interaction between Fe and Ti in (Fe,Ti)S. The 

vertical phase diagram between FeS and TiS, obtained using the thermodynamic database, was in 

good agreement with the experimental results of Mitsui et al. The solubility products of (Fe,Ti)S 

have been experimentally estimated previously. The calculated solubility product agreed with the 

experimental value of TiS. 
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1. Introduction
 The formation mechanism and precipitation behavior of sulfide in steel have been investigated for 

a long time because of the importance of sulfide in the mechanical properties of steel. For example, 

titanium is added to enhance the mechanical properties of steel by removing the interstitial elements 

from the solid solution and forming very fine precipitates. These titanium-containing ultra-low-

carbon steels have been used in the outer panels of automobiles as interstitial-free (IF) steels since 

they have good formability and drawability [1-7]. In this research field, knowledge about the phase 

stability of sulfides is an important factor in manufacturing, and basic information regarding the 

same is often obtained from phase diagrams. The calculation of phase diagrams (CALPHAD) 

approach [8] is very useful for calculating phase diagrams in multi-component and multi-phase 

systems. However, it is difficult to collect systematic experimental data about phase equilibria that 

include sulfur. Therefore, even for a simple Fe–Ti–S ternary system, there are some unsolved issues.

 For the Ti–S binary system, experimental phase equilibria of the Ti-rich side have been reported 

by Eremenko et al. [9] Some experimental investigations on the crystal structures of several sulfides 

have been reported [10]. By using these experimental data, Murray constructed an experimental Ti–

S binary phase diagram, which is shown in Fig. 1[10]. According to this phase diagram, the Ti–S 

binary system is composed of the liquid (L), BCC, HCP, NiAs-type hexagonal TiS, Ti6S, Ti3S, Ti2S, 

Ti8S9, Ti8S10, Ti16S21, TiS2, and TiS3. The S-rich portion (S > 50 atm%) is undetermined because of 

the lack of experimental data. Murray suggested that the phase denoted as “polytypes” at 

approximately 60 mol% S content consists of several metastable sulfides. The experimental 

formation enthalpies of several sulfides, Ti2S [11], TiS [12], [13,14], TiS2 [15,16], and TiS3 [15] 

have also been reported. For the Fe–Ti–S ternary system, the partial phase equilibria of the FeS–TiS 

system were investigated by Mitsui et al. [17], Kaneko et al. [18], and Vogel et al. [19] The 

miscibility gap between FeS and TiS was suggested by Kaneko et al. [18] and Vogel et al. [19] On 

the other hand, Mitsui et al. [17] pointed out that the NiAs structure in the FeS–TiS binary system 

forms a complete solid solution over the temperature range of 1173–1473 K. In this ternary system, 

the solubility products of TiS have been estimated experimentally by many researchers with respect 

to the equilibrium between TiS and FCC. The experimental values vary widely depending on the 

influence of impurities, difference in the heat-treatment conditions and measurement of the deviation 

of the composition analysis. Subramanian et al.[20] obtained the solubility product of TiS by 

quenching the sample after equilibrium heat treatment at several temperatures. Although Mitsui et al. 

[21] performed similar heat treatments as Subramanian et al., they used diffusion couples as samples. 

Other researchers [5,22] have dealt with several samples that are cooled after hot rolling.
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 Recently, first-principles calculations have been often used for thermodynamic assessments using 

the CALPHAD approach when the phase under consideration is metastable and/or an experimentally 

unobtainable phase. Although first-principles calculations describe the physical properties of the 

stoichiometric compounds at the ground state, several calculation techniques have been developed to 

estimate the Gibbs energy at finite temperatures. To include the contribution of atomic vibrations, 

the direct method [23] and the Debye–Grüneisen [24-26] model have been examined, although the 

former is a somewhat time-consuming technique. On the other hand, the Gibbs energy of a solid 

solution can be calculated using the cluster expansion method (CEM) [27] and the cluster variation 

method (CVM) [27-29]. The resulting calculated phase diagrams are in good agreement with the 

experimental results [30]. In this study, we attempted to calculate the thermodynamic properties of 

various sulfides using first-principles calculations, CEM, CVM, and the Debye–Grüneisen model. 

The objective of this study was to clarify the phase equilibria of the Fe–Ti–S ternary system over the 

entire composition range by incorporating the abovementioned techniques into the CALPHAD 

method.

2. Computational procedure

2.1 First-principles calculations, Debye–Grüneisen model, and CVM
The total energy calculations were performed using the VASP code [31,32], which is based on 

density functional theory. The exchange and correlation functions were given by the generalized 

gradient approximation, as proposed by Perdew et al. [33]. We employed Blochl’s projector-

augmented wave (PAW) method as implemented by Kresse and Joubert. [34,35]. For the Ti-S binary 

compounds, the details of the first-principles calculations are as follows. The plane wave energy 

cutoff was chosen to be 364 eV to ensure lattice relaxations. The Methfessel-Paxton order 1 

smearing was used with a sigma value as small as 0.1 eV. The convergence criterion was set to 10-5 

eV in energy during the electronic iterations. The size of the k mesh depends on the crystal structure. 

We used 9×9×2, 2×2×9, 10×10×4, 10×10×5, and 6×9×4 mesh sizes for Ti8S3, Ti2S, TiS, TiS2, and 

TiS3, respectively.

 The formation energy obtained by first-principles calculations is only useful for the evaluation of 

the thermodynamic parameters at 0 K. In this study, to determine the thermodynamic parameters of a 

stoichiometric compound at finite temperatures, the specific heat capacity is calculated using the 

Debye–Grüneisen model. First, the formation energies of the compounds were calculated within a 

band 30% to either side of the equilibrium volume by first-principles calculations. The relationship 
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between the total energy and volume during structure optimization was approximated by the Morse 

function (eq. 1).
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where the distance between the atoms, r, the equilibrium atomic distance, r0, and the constants A, D, 

and λ were estimated as fitting parameters. These parameters determined the bulk modulus B(r0), as 

given in eq. 2.
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where h is Planck’s constant, � is Dirac’s constant, kB is Boltzmann’s constant, ωD is the Debye 

frequency, and k(ν) is the derived Poisson’s ratio, as given in eq. 5. 
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We calculated k(ν) as ν = 0.2  for sulfides because most solids have a Poisson’s ratio of 0.2–0.3. The 

relationship between the Debye temperature and volume is explained using the Grüneisen constant γ 

as follows: 
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γ is described by the Slater approximation [36] and the Dugdale-MacDonald approximation [37]. We 

used the Dugdale-MacDonald approximation for γ because it is suitable over a wide range of 

temperatures [25]. The Debye temperatures outside the equilibrium volume were estimated using eq. 

(6), and the temperature dependence of the Helmholtz energies at several volumes were determined 

using eq. (8).
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where fD is the Debye function. In this work, the relationships between energy and volume at finite 

temperatures were approximated by the Birch–Murnaghan state equation [38] (eq. 9).
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At several temperatures, the equilibrium volumes V0 and bulk modulus B0 were obtained by the 

fitting eq. (9) to the calculated F(T, V). These were necessary to obtain the isobaric specific heat. 

The thermal expansion coefficients were obtained using eq. (10).
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The specific heat at constant volume was calculated with the following equation by using the Debye 

temperature:
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where NA is Avogadro’s number and R is the gas constant. 

According to the above equations, Cv0, α, B0, and V0 were used to calculate the specific heat at a 

constant pressure, Cp0, according to eq. (12).
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The Gibbs energies of solid solutions of the BCC, FCC, and HCP phases of the Ti–S system and 

(Fe,Ti)S were evaluated using CEM and CVM. First, the total energies of the ordered structures at 

several compositions, which were constructed on the lattice of each phase, were computed by first-

principles calculations using the ATAT code [39]. The details of the first-principles calculations in 

CEM are as follows. The plane wave energy cutoff was chosen to be 400 eV to ensure lattice 

relaxations. The k-point meshes were created with k-points per reciprocal atom of 1000. The first-

order Methfessel–Paxton method is used for the Fermi surface with a sigma value as small as 0.1 eV. 

The convergence criterion was set to 10-4 eV in energy during the electronic iterations. The cell 

volume, shape, and atomic positions were allowed to relax until stress was minimized, and the forces 

on any atom were below 0.02 eV/Å.

The formation enthalpies of sulfides are defined as in Eq. (13)

icOrthorhomb
S

HCP
Ti

BCC
Fe)STiFe( HnHmHlHH nml ⋅−⋅−⋅−=∆    (13)

The first term on the right-hand side is the total energy of the compounds that include l Fe, m Ti, 

and n S atoms; the second term is the total energy of BCC that consists of l Fe atoms; the third term 

is the total energy of HCP that consists of m Ti atoms; and the fourth term is the total energy of 

orthorhombic S that consists of n S atoms.

The obtained energies of formation are described using the effective cluster interaction (ECI) for 

cluster α, Jα , and the cluster correlation function, ξα, and are given by
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The cluster correlation function means the product of the occupation operator for site i in the cluster, 

and it is determined uniquely from the atomic configurations. The free energy of the phase under 

consideration at finite temperatures was calculated using Jα and adding a configurational entropy 

term, Sα, as follows:

  (15)∑ ∑−=
α α

ααα γξ STJF a

where γα is the Kikuchi–Barker constant, which indicates the configuration entropy from cluster α. 

In CVM, the minimal Gibbs energy is evaluated by the configurational degree of freedom, which is 

calculated by variation in ξα. For cluster expansion and cluster variation, we used the CVM code 

developed by Sluiter et al. [40,41].

2.2. Thermodynamic modeling of the solution phases

2.2.1. BCC, FCC, and HCP solid solutions

The regular solution approximation was applied to the solid-solution phase. For example, the molar 

Gibbs energy of the BCC phase, , was calculated using the following equation:BCCG
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where  denotes the molar Gibbs energy of element i in the solid state, R is the universal gas BCC
iG�

constant, and the term ix  is the mole fraction of element i in the ternary system. 

This quantity is called the lattice stability parameter, and it is described by the formula

           (17)91732BCCBCC ln −− +++++++=− jTiTfTeTdTTcTbTaHG ii
��
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where  denotes the molar enthalpy of the pure element i in its stable state at T = 25 °C and the BCC
iH�

symbols a–j are coefficients. The parameter denotes the interaction energy between i and j in BCC
i,jL

the BCC phase, and it shows a compositional dependency following the Redlich–Kister polynomial:

          (18)n
jii,j

n
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in which the symbols A–D are coefficients. The term is the ternary interaction parameter BCC
S,TiFe,L

between elements Fe, S, and Ti. The compositional dependency of the interaction parameters is 

expressed as 

 (20)BCC
TiS,Fe,

2
Ti

BCC
TiS,Fe,

1
S

BCC
TiS,Fe,

0
Fe

BCC
TiS,Fe, LxLxLxL ++=

The BCC, FCC, and HCP solid solutions, which exhibit a range of non-stoichiometric alloys, were 

modeled using the same regular solution approximation. The contribution to the Gibbs free energy 

because of magnetic ordering was added to the non-magnetic part of the free energy [42,43]. It is 

noted that the solubility of Fe and Ti in orthorhombic S and monoclinic S was negligible, and hence 

not taken into account in this modeling.

2.2.2. Liquid phase

The associated solution approximation was applied to the liquid phase with an associate, FeS. The 

molar Gibbs energy of the liquid phase, GL, was calculated using the following equation:
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where  denotes the molar Gibbs energy of element i in the liquid state, R is the universal gas L
iG�

constant, and the term ix  is the mole fraction of element i in the ternary system. (n = 0, 1, 2, 3  L
, ji

nL

i, j = Fe, FeS, S, Ti) has a compositional dependency following the Redlich–Kister polynomial. The 

temperature-dependent  parameter was used for the liquid phase of the Ti-S system in this L
STi,

3L

work because it was necessary to assess the liquidus of the Ti-rich region. 

2.2.3.Fe2Ti Laves phase 

The C14 Laves phase, Fe2Ti, appears over a wide compositional range. To account for the 

homogeneity range, Kumar et al. [44] used a three-sublattice model. This thermodynamic description 

was used in our study.

2.2.4. Stoichiometric compounds

The binary compound phases with zero homogeneity ranges (i.e., FeTi, FeS2, Ti3S, Ti8S9, Ti8S10, 

Ti8S3) were treated as stoichiometric compounds. 

2.2.5. Ternary compounds
In this study, three ternary phases are considered. First, the solubility of Fe in the TiS phase has 

been reported from experiments [17-19]. This phase was denoted as (Fe,Ti)S in this work. The Gibbs 

energy of this phase was expressed using a two-sublattice model, in which the Fe atoms were 

substituted with Ti. Furthermore, the solubility of this phase has been experimentally observed [45] 

on the S-rich side in Fe–S systems and on the S-poor side in Ti–S systems. Therefore, vacancies are 

considered for the two sublattices, and the Gibbs energy was modeled using the formula 
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The terms  and are the site fractions of element i on the first and second sublattice, )1(
iy )2(

iy

respectively. For example, the parameter  denotes the interaction energy between dissimilar Ti)S(Fe,
i,j:kL

atoms in the first sublattice. The interaction parameters vary with the composition as a polynominal 

expansion. For example, is expressed as(Fe,Ti)S
S:Fe,TiL

                      (23)(Fe,Ti)S
S:Fe,Ti
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A similar compositional dependency was introduced in and . , , Ti)S(Fe,
S:VaFe,L Ti)S(Fe,

VaS,:VaL Ti)S(Fe,
VaS,:FeL Ti)S(Fe,

Va:VaFe,L

, and were assumed to be independent of composition.Ti)S(Fe,
S:VaTi,L Ti)S(Fe,

SVa,:TiL

 In this system, other ternary compounds, Fe0.5TiS2 [46], FeTi2S4 [47], and FeTi4S8 [48], have been 

reported. For example, the crystal structures of Fe0.5TiS2 are compared to the crystal structures of 

(Fe,Ti)S in Figs. 2(a) and (b). We can see the similarity in the crystal structure between the two 

materials. The structure parameters of Fe0.5TiS2, TiS2 [49] and TiS [50] are shown in Table 1. In 

Fe0.5TiS2, Fe and Ti occupy one site of the metallic sites of (Fe,Ti)S. The vacancies were introduced 

on Fe sites with a site occupation of 0.5. Therefore, the Fe0.5TiS2 structure can be considered as the 

ordered structure of the (Fe,Ti)S structure, where Fe and Ti occupy random metal sites. FeTi2S4 and 
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FeTi4S8 are also ordered structures of the (Fe,Ti)S structure. These phases were treated as individual 

(Fe,Ti)S2 phases in this work. In addition, Fig. 2(c) shows that the crystal structure of TiS2 is almost 

identical to the Fe0.5TiS2 structure as if the site occupation of Fe is 0. Therefore, the binary 

compound TiS2 is also described as the same (Fe,Ti)S2 phase. As a result, the three-sublattice model 

denoted by  was applied to this phase. )Va,Ti()Va,S)(Va,Fe( )3(
Va

)3(
Ti

)2(
Va

)2(
S

)1(
Va

)1(
Fe

2 yyyyyy

 Another FeTi3S6 has been reported as a stoichiometric compound [51], but the substitution between 

Fe and Ti was considered, and the four-sublattice model denoted by

was applied to this phase. The ratio between metal 24122 )Ti,Fe()Ti,Fe(S)Ti,Fe( )4(
Ti

)4(
Fe

)3(
Ti

)3(
Fe

)1(
Ti

)1(
Fe yyyyyy

and sulfur is 2:3 with respect to this thermodynamic model and this phase was described as 

(Fe,Ti)2S3 in this work.
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3. Results and discussion

3.1. Fe–Ti and Fe–S binary systems
Most of the descriptions of the lattice stability parameters for each pure element were obtained 

from the Scientific Group Thermodata Europe (SGTE) data [52] and are shown in Table 2. The 

lattice stability of HCP-sulfur is not present in the SGTE data. Wang et al. have calculated the lattice 

stability of HCP-sulfur, which was referenced to FCC-sulfur by first-principles calculation [53]. 

Therefore, the formation energy was used to add the lattice stability of FCC-sulfur in this work.

The Fe–Ti binary system is composed of the liquid (L), BCC, FCC, Fe2Ti, FeTi, and HCP phases. 

A thermodynamic analysis of this binary system has been performed by Kumar et al. [44], and these 

results were used in our study. The adopted thermodynamic description is shown in Table 3, and the 

calculated Fe–Ti binary phase diagram is shown in Fig. 3(a). The Fe–S binary system is composed 

of the liquid (L), BCC, FCC, FeS, FeS2, and orthorhombic and monoclinic S phases. In this study, 

the thermodynamic parameters assessed by Lee [54] were adopted and are listed in Table 3. The 

calculated Fe–S binary phase diagram is shown in Fig. 3(b). 

3.2. Ti–S binary system
 According to Fig. 1, the Ti–S binary system is composed of the liquid (L), BCC, and HCP phases, 

NiAs-type hexagonal TiS, Ti6S, Ti3S, Ti2S, Ti8S9, Ti8S10, Ti16S21, TiS2, and TiS3. Murray suggested 

that the phase denoted as “polytypes” at around 60 mol% S consists of several metastable sulfides. 

The polytypes, Ti16S21, Ti6S, and Ti3S were excluded from consideration in this thermodynamic 

analysis because details of the constituent phase, space groups of these sulfides, and melting points 

have not been confirmed. Ti8S3 has a composition close to that of Ti3S and the crystal structure of 

this sulfide has been determined [55]. Therefore, Ti8S3, instead of Ti3S is considered in this work. 

The formation enthalpies of these sulfides were assessed by using first-principles calculations. The 

enthalpies of formation and the lattice parameters of the sulfides in this binary system were 

evaluated using the first-principles calculations listed in Table 4. For the enthalpies of formation, the 

HCP and gas phases were used as the reference state of Ti and S [56], respectively. The 

experimental values of several sulfides are also described in Table 4. For Ti2S, the enthalpy of 

formation was predicted by the other enthalpies of sulfides [11]. For TiS, several experimental 

values were reported by the sulfur activity measurement [12], a development of Pauling’s 

electronegativity rules [13] and mass spectrometry studies [14]. For TiS2, the experimental formation 

enthalpies have been estimated by combustion calorimetry [15] and partial pressure measurement of 

S2 [16]. For TiS3, the combustion calorimetric value reported by [15]. Our calculated enthalpies lie 

within reasonable agreement with the experimental values. 
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Furthermore, to obtain the Gibbs energies, including the contribution of the lattice vibration, the 

isobaric specific heat of sulfides was calculated by the Debye–Grüneisen model. Fig. 4 shows the 

isobaric specific heat of sulfides in the Ti–S system obtained by the Debye–Grüneisen model and the 

thermodynamic analysis. The results of the thermodynamic analysis are in good agreement with the 

results of the Debye–Grüneisen model. 

For the Ti–S system, it is important to determine the Gibbs energy of solid solutions in order to 

examine the solubility more precisely. According to Murray’s review, the maximum solubility of 

BCC and HCP is 0.01 mol% and 0.02 mol%, respectively. However, experimental values for the 

phase boundaries are not available; therefore, the experimental maximum solubility is insufficient 

for thermodynamic assessment. The Gibbs energies of solid solutions in HCP, BCC, and FCC were 

calculated using CEM and CVM. 

The number of crystal structures based on HCP, BCC, and FCC, which were calculated by first 

principles calculations, was 151, 92, and 91, respectively. Fig. 5 shows the structure of (a) HCP, (b) 

BCC, and (c) FCC and the number of points for each cluster listed in Table 5. As shown in the table, 

clusters of an optimal set are composed of point, pair triangle, and four points for this binary system. 

To extract the values for ECIs, the enthalpies of formation were utilized to express the free energy of 

this binary system as given in Table 5.

The metastable FCC was included in this analysis because it is considered to have an effect on the 

phase equilibria between FCC and the sulfides in the Fe–Ti–S ternary system. Fig. 6 shows the 

energies of the (a) HCP, (b) BCC, and (c) FCC phases calculated by CVM and thermodynamic 

analysis. The results of the thermodynamic analysis are in good agreement with the CVM results. 

The Gibbs energies of the solid solutions at finite temperatures were obtained.

 Fig. 7 shows the calculated phase diagram as compared to the experimental data of Eremenko et al. 

[8], which is the basis of Murray’s phase diagram. The calculated phase diagram is in good 

agreement with the experimental results for the Ti-rich side. The phase equilibria in the S-rich side 

have not been determined experimentally because of the difficulty in performing the experiments. 

Phase decomposition of the liquid was found in the calculated Ti–S phase diagram. In metals and 

sulfur systems such as Fe–S, Cu–S, and Mn–S, binodal phase decomposition in liquid is often 

observed to result from short-range ordering. Hence, short-range ordering of the liquid phase is 

predicted although it has not been reported.

The solubility of the solid-solution phases was confirmed to be very small (Fig. 8), which shows 

the enlarged Ti-rich portion of the calculated Ti–S phase diagram. The solvus of BCC and HCP is 

smaller than that in Murray’s report. The low solubility of the metal solid solutions has been 

observed in other metal and sulfur binary systems. In the Ti–S system, the low solubility is a result 

of the high stability of metal sulfides, i.e., Ti8S3. A compatible calculated phase diagram comparable 
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to similar alloy systems can be constructed by evaluating the Gibbs energy based on theoretical 

calculations in an undetermined alloy system that has little experimental data on phase equilibria.

3.3. Fe–Ti–S ternary system
 Formation energies of superstructures based on (Fe,Ti)S over the composition range FeS to TiS 

were calculated by first-principles calculations and their phase stabilities were assessed at finite 

temperatures by using CEM and CVM. To extract the values for the 15 ECIs shown in Table 6, 75 

enthalpies of formation for the ordered structures were calculated. Fig. 9 shows the structure of 

(Fe,Ti)S and the number of points for each cluster listed in Table 6. As shown in the table, clusters 

of an optimal set are composed of point, pair triangle, and four points for this system.

 Fig. 10 shows the free energies of (Fe,Ti)S at finite temperatures calculated by CVM; ECIs 

obtained by CEM were used in this calculation. For this system, isomorphic and phase-separating 

behavior around Fe and Ti, respectively, has been reported [17-19]. The calculated free energy curve 

is convex downward, which indicates the behavior of an isomorphic solid solution because of the 

attractive interaction between Fe and Ti in (Fe,Ti)S. 

 For the (Fe,Ti)S2 phase, vacancies were introduced in both the Fe and Ti sites, and 

 was used as a thermodynamic model. In order to assess )Va,Ti()Va,S)(Va,Fe( )3(
Va

)3(
Ti

)2(
Va

)2(
S

)1(
Va

)1(
Fe

2 yyyyyy

the formation enthalpy curve of this phase, the formation energies of superstructures of various 

compositions were calculated by first-principles calculations by changing the site occupation of Fe 

and Ti. The composition ranges in this ground-state analysis were between FeS2 and FeTiS2 and 

between FeTiS2 and TiS2. Table 7 shows the results of the ground-state analysis over these 

composition ranges. The results of the first-principles calculations and thermodynamic analysis are 

shown in Figs. 11(a) and (b), which show the composition ranges between FeS2 and FeTiS2 and 

between FeTiS2 and TiS2, respectively. The stability of this phase increases drastically from FeS2 to 

TiS2. -FeS2 is unstable compared to -FeS2, which is the equilibrium phase, and it is in P3m1 3Pa

good agreement with a previous thermodynamic analysis by Lee et al. [54] According to this 

calculation, both FeTi2S4 and FeTi4S8 belong to the C2/m space groups, as stable phases. This result 

shows good agreement with the experimental observations that FeTi2S4 and FeTi4S8 have been 

reported to have C2/m space groups [47,48].

For FeTi3S6, which has a P6322 space group, ground-state analysis was performed by considering 

the substitution between Fe and Ti as the (Fe,Ti)2S3 phase. Figure 12 shows the assessed enthalpy of 

formation for the (Fe,Ti)2S3 phase as a solid line between Fe2S3 and Ti2S3. The white circles indicate 

the results of the ground-state analysis. Similar to (Fe,Ti)S2, the formation enthalpy of this phase 

drastically decreases from Fe2S3 to Ti2S3. P6322-Fe2S3 and P6322-Ti2S3 behave as metastable phases 
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in the calculated Fe–S and Ti–S binary phase diagrams, and good agreement with the experimental 

phase diagram is obtained.

The Fe–Ti–S ternary phase diagrams were calculated by using the above free energies of those 

phases. Fig. 13 (a) and (b) show the calculated isothermal section diagram of the Fe–Ti–S ternary 

system at 1273 K and the portion of this phase diagram near the composition of 50 mol% S, 

respectively. In Fig. 13 (b), the single phase of (Fe,Ti)S is the gray region. Experimental results by 

Mitsui et al. [17] show that the mono-sulfide in this system is a complete substitution between FeS 

and TiS. In the figure, (Fe,Ti)S is an isomorphic solid solution, and this thermodynamic analysis 

confirms the results by Mitsui et al. Mitsui et al. pointed out the effect of microsegregation during 

the solidification of samples in the experimental results by Kaneko et al. [18] and Vogel et al. [19] 

On the other hand, the good agreement with our calculated results indicates that the powder-

synthesis method performed by Mitsui et al. is supposed to cause the system to be under equilibrium. 

The calculated results were compared in a vertical phase diagram of FeS and TiS, which is shown in 

Fig. 14. Experiments confirmed that (Fe,Ti)S is observed over a wide range of concentrations, and 

this is consistent with our calculated phase diagram, although the appearance of a small portion of 

secondary phases is also predicted. Around the TiS side, the calculated phase diagram shows the 

two-phase region of (Fe,Ti)S and Ti8S9. This is roughly consistent with the experimental results, 

denoted by the open circles. It should be noted that the solvus of the Ti-rich side of (FeTi)S is 

expanded by addition of Ti, which can be confirmed from the bottom line of the single (Fe,Ti)S in 

Fig. 13(b). That is why there is large single phase of (Fe,Ti)S at about 20–40 mol% Ti in Fig. 14.

Figure 15 shows the solubility products of TiS calculated using our thermodynamic database and 

experimental values. The experimental values vary widely depending on the influence of impurities, 

difference in the heat-treatment conditions and measurement of the deviation of the composition 

analysis. Our calculated result shows very a close gradient of the solubility product, in agreement 

with the reports of Yang et al. and Mitsui et al. To the best of our knowledge, the experimental 

solubility products of TiS have never been reproduced by calculation using the current 

thermodynamic database. The solubility product of TiS is described as -α1/T+ α2, where α1 ~ 

 and α2 ~ log(wTiwS/w2
Fe)+2. The term  is the formation energy and  fGLL TiS

FCC
SFe,

FCC
Fe,Ti ∆−+ fGTiS∆ iw

is the atomic weight of the elements Fe, Ti, and S. Therefore, the thermodynamic parameters 

determined in this study only affect α1, which is the gradient of the solubility product. Although the 

calculated solubility product against 10 000/T is slightly larger than the experimental values, the 

gradient of the solubility product seems to be consistent with the experimental results. We think the 

reason for the finite difference between the experimental and calculated value is the unavoidable 

experimental deviation of the atomic concentration, because even a very small difference of 0.01 

mass% can cause the observed deviation. We can conclude that the thermodynamic parameters of 
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this study can reproduce the experimental solubility products of TiS reported by Yang et al. and 

Mitsui et al. 

4. Conclusion
 A thermodynamic analysis of the Fe-Ti-S ternary system was performed by incorporating first-

principles calculations into the CALPHAD approach, yielding the following results.

(1) For the Ti-S binary system, CEM and CVM were performed on the BCC, FCC, and HCP solid 

solution. The calculated phase diagram is in good agreement with the experimental results for the Ti-

rich side. Phase decomposition of the liquid was found in the calculated Ti–S phase diagram. The 

low solubility of the solid-solution phases was also revealed from this calculation.

(2) For the Fe-Ti-S ternary system, CEM and CVM were performed on the (Fe,Ti)S phase. The 

calculated free energy curve is convex downward, which indicates the behavior of an isomorphic 

solid solution due to the attractive interaction between Fe and Ti in (Fe,Ti)S. The thermodynamic 

analysis is consistent with the results reported by Mitsui et al., where the mono-sulfide forms 

complete substitution between FeS and TiS. 

(3) The solubility products of TiS are calculated using our thermodynamic database. Although the 

calculated value is slightly larger than the experimental values, our result, especially its gradient 

against 10 000/T, seems to be consistent with the experimental results. The thermodynamic 

parameters of this study can reproduce the gradient of the experimental solubility products of TiS. 
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Figure captions

Fig. 1. The experimental Ti–S binary phase diagram by Murray [10].

Fig. 2. The crystal structure of (a) Fe0.5Ti S2, (b) (Fe,Ti)S, and (c) TiS2. Black and gray spheres 

indicate the sites of Ti and Fe, respectively.

Fig. 3. The calculated binary phase diagrams of the (a) Fe–Ti and (b) Fe–S systems.

Fig. 4. The isobaric specific heat of the sulfides (a) Ti8S3, (b) Ti2S, (c) TiS, (d) TiS2, and (e) TiS3 in 

the Ti–S binary system obtained by the Debye–Grüneisen model and thermodynamic analysis.

Fig. 5. The crystal structures of (a) HCP, (b) BCC, and (c) FCC. The numbers denote atomic sites 

and correspond to the third column of Table 1. The gray spheres indicate the sites of Ti and S.

Fig. 6. The Gibbs energies of (a) HCP, (b) BCC, and (c) FCC phases at 1500 K obtained by CVM 

and thermodynamic analysis.

Fig. 7. The calculated Ti–S binary phase diagram with experimental data by Eremenko et al. [8]

Fig. 8. The Ti-rich portion of the calculated Ti–S binary phase diagram.

Fig. 9. The crystal structures of (Fe,Ti)S. The numbers denote atomic sites and correspond to Table 

6. The black spheres indicate the Fe and Ti sites. The gray spheres show the S sites.

Fig. 10. The calculated free energy of the (Fe,Ti)S phase between FeS and TiS at several 

temperatures.



20

Fig. 11. The assessed enthalpy of formation for the (Fe,Ti)S2 phase as a result of thermodynamic 

analysis.

Fig. 12. The enthalpy of formation for the (Fe,Ti)2S3 phase between Fe2S3 and Ti2S3.

Fig. 13. (a)The calculated isothermal section diagram of the Fe–Ti–S ternary system at 1273 K.

(b) The portion of the calculated Fe-Ti-S ternary phase diagram near the composition of 50 mol% S.

Fig. 14. The calculated vertical phase diagram between FeS and TiS with experimental results.

Fig. 15. The solubility products of the TiS phase with experimental results.

Table captions

Table 1. The lattice and structure parameters of Fe0.5TiS2, TiS2, and TiS.

Table 2. The lattice stability parameters for Fe, Ti, and S.

Table 3. The thermodynamic parameters for the binary and ternary systems.

Table 4 The calculated thermodynamic and physical parameters of sulfide. The enthalpy of formation, 

HCP, and gas phase were dealt as the reference state of Ti and S [56]. 

Table 5. Effective cluster interaction for the multibody cluster with respect to HCP, BCC, and FCC 

in the Ti-S binary system. The site numbers correspond to the number denoted in Fig. 5.

Table 6. Effective cluster interaction for the multibody cluster with respect to (Fe,Ti)S. The site 

numbers correspond to the number denoted in Fig. 11.

Table 7. The results of ground state analysis of (Fe,Ti)S2.



Table 1. The lattice and structure parameters of Fe0.5TiS2, TiS2 and TiS.

Compound Space group Lattice parameters
Wyckoff 

position
x y z Occ.

a = b = 0.3423 nm S(2d) 0.33333 0.66667 0.245 1

Fe(1b) 0 0 0.5 0.5Fe0.5TiS2 13mP
c = 0.5711 nm

Ti(1a) 0 0 0 1

a = 0.341 nm S(2d) 0.33333 0.66667 0.25 1
TiS2 13mP

c = 0.5705 nm Ti(1a) 0 0 0 1

a = 0.3305 nm S(2c) 0.33333 0.66667 0.25 1
TiS P63/mmc

c = 0.6360 nm Ti(2a) 0 0 0 1



Table 2. The lattice stability parameters for Fe,Ti, and S.

Species Phase Lattice stability parameters, J/mol Temperature, K Ref.
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500<T<700

136

2

3507570103.791365+

0.0288384ln9.944+

113.29887721243.126

−− −×

−

−=

TT

TTT

T

700<T<900

136

2

3215170101.84974+

0.01712545ln2.425

32.7952316117.849

−− −×

−−

−=

TT

TTT

T

900<T<1300

L icOrthorhomb
S

L
S HG �� −

TTT ln32175.590536+6461.814 −−= 1300<T<1301

S

Orthorhombi

c
icOrthorhomb

S
icOrthorhomb

S HG �� −
36

2

108.179537+

0.0273801ln10.726

53.913855+5198.294

T

TTT 

T

−×

−−

−=

298.15<T<368.3

[52]



1

36

2

36871+

101.406467+

70.01093687

ln17.8693298
94.182332+6475.706

−

−×

−

−
−=

T

T

T

TT
T

368.3<T<1300

TT
T

ln32
188.304687+12485.546

−
−=

1300<T<1301

105000108.179537

0.0273801ln10.726

53.91385599801.706

36

2

+×+

−−

+=

− T

TTT

T

298.15<T<368.3

105000
36871101.406467

70.01093687ln17.8693298

94.18233298524.294

136

2

+
+×+

−−

+=

−− TT

TTT

T

368.3<T<1300
BCC icOrthorhomb

S
BCC

Va:S HG �� −

105000ln32
188.30468792514.454

+−
++=

TT
T

1300<T<1301

105000108.179537

0.0273801ln10.726

53.91385599801.706

36

2

+×+

−−

++=

− T

TTT

T

298.15<T<368.3

10500036871

101.406467

70.01093687ln17.8693298

94.18233298524.294

1

36

2

++

×+

−−

++=

−

−

T

T

TTT

T

368.3<T<1300
FCC icOrthorhomb

S
FCC

Va:S HG �� −

105000ln32
188.30468792514.454

+−
++=

TT
T

1300<T<1301

HCP icOrthorhomb
S

HCP
Va:S HG �� − 43630γ

Va:S −G� 298.15<T<6000
This 

work



Table 3. The thermodynamic parameters for the binary and ternary systems.

System Phase and model Thermodynamic parameters, J/mol of model Temperature, K Ref.

L:(Fe,FeS,S)

TGGG 479.1104225L
S

L
Fe

L
FeS −−=−− ���

TL 1867.2353879L
FeSFe,

0 −=

TL 807.2148313L
SFeS,

0 −=

TL 7145.2472983L
SFeS,

1 +−=

298.15<T<6000

BCC:(Fe,S) TL 7201.18119675BCC
SFe,

0 −−= 298.15<T<6000

FCC:(Fe,S) TL 18108733FCC
SFe,

0 −−= 298.15<T<6000

TTT
GGG

ln78.119.18107518

icOrthorhomb
S

BCC
Va:Fe

(Fe,Ti)S
S:Fe

+−−=

−− ���

65000BCC
Va:Fe

Ti)S(Fe,
Va:Fe =− GG ��

258600icOrthorhomb
S

(Fe,Ti)S
S:Va =− GG ��

1000000(Fe,Ti)S
VaVa: =G�

TL 10409000Ti)S(Fe,
S:VaFe,

0 +−=

TL 2060000Ti)S(Fe,
S:VaFe,

1 +=

100000(Fe,Ti)S
VaS,:Fe

0 =L

TL 10407000Ti)S(Fe,
VaS,:Va

0 +−=

TL 2060000Ti)S(Fe,
VaS,:Va

1 +=

(Fe,Ti)S: (Fe,Va)(S,Va)

100000Ti)S(Fe,
Va:VaFe,

0 =L

298.15<T<6000

Fe-S

FeS2: (Fe)(S)2 T
GGG

567.48177763
2 icOrthorhomb

S
BCC

Va:Fe
FeS

Va:S:Fe
2

+−=

−− ���

298.15<T<6000

[54]

TL 809.967589L
Ti:Fe

0 +−=
L:(Fe,Ti)

4731L
Ti:Fe

1 −=L
298.15<T<6000

HCP:(Fe,Ti) TL 668.815132HCP
TiFe,

0 −= 298.15<T<6000

TL 954.1457943BCC
Fe,Ti

0 +−=
BCC:(Fe,Ti)

6059BCC
Fe,Ti

1 −=L
298.15<T<6000

FCC:(Fe,Ti) TL 487.550304FCC
Fe,Ti

0 +−= 298.15<T<6000

69869G4G8G BCC
Fe

FCC
Fe

TiFe
Fe:Fe:Fe

2 =−− ���

60724G4G6G BCC
Fe

FCC
Fe

TiFe
Fe:FeVa:

2 =−− ���

429782G4G8G HCP
Ti

FCC
Fe

TiFe
Fe:Ti:Fe

2 −=−− ���
Fe2Ti:(Fe,Va)2(Fe,Ti)4(Fe)6 

356573G4G6G HCP
Ti

FCC
Fe

TiFe
Fe:TiVa:

2 −=−− ���

298.15<T<6000

Fe-Ti

FeTi:(Fe)(Ti) TGGG 5.753650HCP
Ti

BCC
Fe

FeTi
Ti:Fe +−=−− ��� 298.15<T<6000

[44]

TL 65180000L
STi,

0 −−=Ti-S
L:(Ti,S)

TL 48100000L
STi,

1 +=
298.15<T<6000

This 

work



TL 160445000L
STi,

2 −=

TL 1520000L
STi,

3 −=

BCC:(Ti,S)

450000BCC
STi,

0 −=L

80000BCC
STi,

1 −=L

200000BCC
STi,

2 =L

298.15<T<6000

HCP:(Ti,S)
370000HCP

STi,
0 −=L

115000HCP
STi,

0 −=L
298.15<T<6000

FCC:(Ti,S)

410000FCC
STi,

0 −=L

100000FCC
STi,

1 −=L

30000FCC
STi,

2 =L

298.15<T<6000

Ti8S3:(Ti)8(S)3
3622

icOrthorhomb
S

HCP
Va:Ti

STi
S:Ti

1078871.11068379.3

ln0591.1477960410
3838

TT

TTT
GGG

−− ×−×+

+−−=

−− ���

298.15<T<6000

3722

icOrthorhomb
S

HCP
Va:Ti

STi
S:Ti

103354.8102143.1

ln0010.14303980
22

TT

TTT
GGG

−− ×−×+

++−=

−− ���

1000002 HCP
Va:Ti

STi
Va:Ti
2 =− GG ��

TGG 10170000icOrthorhomb
S

STi
S:Va

2 +=−��

300000STi
Va:Va

2 =G�

Ti2S:(Ti,Va)2(S,Va)

TL 10450000STi
S:VaTi,

0 2 +−=

TL 6047000STi
VaS,:Ti

0 2 −−=

298.15<T<6000

3723

icOrthorhomb
S

HCP
Va:Ti

(Fe,Ti)S
S:Ti

106.4106.6

ln8.01417.279121

TT

TTT
GGG

−− ×−×+

++−=

−− ���

TGG 30121418HCP
Va:Ti

(Fe,Ti)S
Va:Ti +=−��

258600icOrthorhomb
S

(Fe,Ti)S
SVa: =− GG ��

1000000(Fe,Ti)S
VaVa: =G�

TL 45125000Ti)S(Fe,
S:VaTi,

0 −−=

TL 45125000Ti)S(Fe,
SVa,:Ti

0 −−=

TL 10409000Ti)S(Fe,
VaS,:Va

0 +−=

(Fe,Ti)S:(Ti,Va)(S,Va)

TL 2060000Ti)S(Fe,
VaS,:Va

1 +=

298.15<T<6000

Ti8S9:(Ti)8(S)9 T
GGG

2722400000
98 icOrthorhomb

S
HCP

Va:Ti
STi

S:Ti
98

+−=

−− ���

298.15<T<6000

Ti8S10:(Ti)8(S)9 T
GGG

5.3042490000
108 icOrthorhomb

S
HCP

Va:Ti
STi

S:Ti
108

+−=

−− ���

298.15<T<6000



3723

icOrthorhomb
S

HCP
Va:Ti

(Fe,Ti)S
Ti:SVa:

10988.910836.12

ln2376.1348.340634
22

TT

TTT
GGG

−− ×−×+

−+−=

−− ���

TGG 120400000HCP
Va:Ti

Ti)S(Fe,
Ti:Va:Va

2 +=−��

100000icOrthorhomb
S

(Fe,Ti)S
Va:SVa:

2 =− GG ��

298.15<T<6000
(Fe,Ti)S2: (Ti,Va)(S,Va)2

8000002(Fe,Ti)S
TiVa:S,Va:

0 −=L

3622

icOrthorhomb
S

HCP
Va:Ti

TiS
S:Ti

1054316.11080908.1

ln2784.384380204
33

TT

TTT
GGG

−− ×−×+

−+−=

−− ���

40000HCP
Va:Ti

TiS
Va:Ti

3 =− GG ��

TiS3:(Ti)(S,Va)3

800003TiS
VaS,:Ti

0 −=L

298.15<T<6000

(Fe,Ti)S:(Fe,Ti,Va)(S,Va)
TL 2045000Ti)S(Fe,

S:TiFe,
0 −−=

20000Ti)S(Fe,
S:TiFe,

1 −=L
298.15<T<6000

T
GGGG

60784.317783
2 icOrthorhomb

S
HCP

Va:Ti
BCC

Va:Fe
Ti)S(Fe,
Ti:S:Fe

2

+−=

−−− ����

T
GGG
4.4748.68143

2 icOrthorhomb
S

BCC
Va:Fe

(Fe,Ti)S
Va:S:Fe

2

+−=

−− ���

02 HCP
Va:Ti

BCC
Va:Fe

Ti)S(Fe,
Ti:Va:Fe

2 =−− GGG ���

0BCC
Va:Fe

Ti)S(Fe,
Va:Va:Fe

2 =− GG ��

1000002Ti)S(Fe,
Va:Va:Va =G�

33000STi)(Fe,
Ti:S:VaFe,

0 2 −=L

(Fe,Ti)S2:(Fe,Va)(S,Va)2(Ti,Va)

21.31263STi)(Fe,
VaTi,:S:Fe

0 2 −=L

298.15<T<6000

05.193319
64 icOrthorhomb

S
BCC

Va:Fe
S(Fe,Ti)

Fe:Fe:S:Fe
32

−=

−− GGG ���

063 icOrthorhomb
S

HCP
Va:Ti

BCC
Va:Fe

S(Fe,Ti)
Fe:Fe:S:Ti

32 =−−− GGGG ����

TGGGG 101579283 icOrthorhomb
S

HCP
Va:Ti

BCC
Va:Fe

S(Fe,Ti)
Fe:Ti:S:Fe

32 +−=−−− ����

063 icOrthorhomb
S

HCP
Va:Ti

BCC
Va:Fe

S(Fe,Ti)
Fe:Ti:S:Ti

32 =−−− GGGG ����

063 icOrthorhomb
S

HCP
Va:Ti

BCC
Va:Fe

S(Fe,Ti)
Ti:Fe:S:Fe

32 =−−− GGGG ����

03 icOrthorhomb
S

HCP
Va:Ti

BCC
Va:Fe

S(Fe,Ti)
Ti:Fe:S:Ti

32 =−−− GGGG ����

This 

work

3622

icOrthorhomb
S

HCP
Va:Ti

BCC
Va:Fe

S(Fe,Ti)
Ti:Ti:S:Fe

100360.6109812.3

ln709.61111105000
6332

TT

TTT
GGGG

−− ×−×+

−+−=

−−− ����

Fe-Ti-

S

(Fe,Ti)2S3:(Fe,Ti)(S)6(Fe,Ti)2(Fe,Ti)

TGGG 50062668032 icOrthorhomb
S

HCP
Va:Ti

S(Fe,Ti)
Ti:Ti:S:Ti

32 +−=−− ���

298.15<T<6000



Table 4. The calculated thermodynamic and physical parameters of sulfide. About enthalpy of formation, 

the reference state of Ti and S were dealt with HCP and gas[56], respectively. 

System Compound Space group
Optimized lattice 

parameter [Å ]

Calculated 

enthalpy

of formation

[kJ/mol of 

atom]

Experimental 

enthalpy

of formation

[kJ/mol of atom]

Ref.

a=25.01

b=3.32

c=19.21
Ti8S3 C 2 / m

α=γ=90° β=122.8°

-91.43 - -

a=11.36

b=14.02

c=3.32
Ti2S P n n m

α=β=γ=90°

-110.9 -93.5±14.0 [11]

a=b= 3.26 -150.7±14.7 [12]

c=6.47 -165.3±20.9 [13]TiS P 6 3 / m m c

α=β=90° γ=120°

-146.3

-136.0±14.7 [14]

a=b=3.41

c=6.24TiS2 13mP
α=β=90° γ=120°

-127.0
-142.3

-135.8±11.2

[15]

[16]

a=11.36

b=14.02

c=3.32

α=γ=90° β=97.1°

Ti-S

TiS3 P 2 1 / m

α=β=90° γ=120°

-104.7 -107.5±8.4 [15]



Table5. Effective cluster interaction for the multibody cluster with respect to HCP, BCC and FCC in 

Ti-S binary system. The site numbers correspond to the number denoted in Fig. 5.

HCP

N type site ECI [meV/atom]

1 point 1 -4074.3 

2 pair 1, 2 1269.3 

3 pair 1, 3 1269.3 

4 pair 2, 4 1087.5 

5 pair 4, 5 1087.5 

6 pair 1, 6 -219.9 

7 pair 1, 7 -219.9 

8 pair 4, 8 21.9 

9 pair 1, 9 -147.1 

10 pair 4, 10 -83.5 

11 pair 4, 11 67.2 

12 pair 4, 12 67.2 

13 pair 4, 13 355.2 

14 triangle 1, 2, 3 -796.8 

15 triangle 1, 2, 6 289.6 

16 triangle 1, 7, 14 289.6 

17 triangle 1, 2, 15 -473.3 

18 triangle 1, 6, 9 45.5 

19 triangle 1, 7, 16 105.0 

20 triangle 2, 4, 13 -302.1 

21 triangle 1, 6, 11 28.6 

22 triangle 1, 7, 17 28.6 

23 triangle 2, 4, 8 78.3 

24 triangle 1, 9, 15 452.6 

25 triangle 1, 7, 18 520.9 

26 triangle 4, 10, 12 218.5 

27 four-point 1, 7, 18, 14 -660.0 

28 four-point 1, 2, 3, 17 -142.8 

29 four-point 1, 7, 16, 17 -133.8 

BCC

N type site ECI [meV/atom]

1 point 1 -3232.4



2 pair 1, 2 3417.9

3 pair 1, 3 -807.7

4 pair 1, 4 -204.5

5 pair 1, 5 -189.1

6 pair 1, 6 -38.3

7 triangle 1, 2, 3 -1086.7

8 triangle 1, 2, 4 1025.4

9 triangle 1, 2, 6 -838.6

10 triangle 1, 2, 5 1286.6

11 triangle 1, 4, 6 873.5

12 triangle 1, 5, 6 1342.7

13 triangle 1, 5, 7 402.9

14 triangle 1, 5, 8 -286.4

15 four-point 1, 2, 5, 6 -851.5

16 four-point 1, 3, 5, 7 -289.1

17 four-point 1, 3, 5, 6 -409.1

18 four-point 1, 5, 7, 9 -125.6

FCC

N type site ECI [meV/atom]

1 point 1 -3726.7 

2 pair 1, 2 4055.4 

3 pair 1, 3 -1401.1 

4 pair 1, 4 758.4 

5 triangle 1, 2, 5 -427.4 

6 triangle 1, 2, 3 1939.6 

7 triangle 1, 2, 4 -1475.6 

8 triangle 1, 3, 6 -397.5 

9 triangle 1, 3, 7 717.8 

10 triangle 1, 3, 8 314.2 

11 triangle 1, 4, 9 414.9 

12 triangle 1, 4, 10 335.2 

13 four-point 1, 2, 5, 11 -317.1 

14 four-point 1, 2, 5, 6 212.9 

15 four-point 1, 2, 6, 12 79.6 

16 four-point 1, 2, 3, 7 -96.4 

17 four-point 1, 2, 4, 6 -365.6 



18 four-point 1, 2, 3, 8 -415.5 

19 four-point 1, 3, 5, 7 -504.1 

20 four-point 1, 3, 6, 11 -151.0 

21 four-point 1, 3, 4, 6 883.5 

22 four-point 1, 3, 6, 7 -273.2 

23 four-point 1, 2, 4, 9 -167.0 

24 four-point 1, 3, 4, 11 464.9 

25 four-point 1, 3, 4, 9 -275.9 

26 four-point 1, 3, 4, 13 231.2 

27 four-point 1, 3, 8, 13 77.2 

28 four-point 1, 3, 4, 10 -277.1 

29 four-point 1, 4, 6, 10 -195.4 



Table6. Effective cluster interaction for the multibody cluster with respect to (Fe,Ti)S. The site 

numbers correspond to the number denoted in Fig. 11.

N type site ECI [meV/atom]

1 point 1 -23.8 

2 pair 1, 2 -330.2 

3 pair 1, 3 -202.0 

4 pair 1, 4 28.3 

5 pair 1, 5 -27.3 

6 triangle 1, 6, 7 7.8 

7 triangle 1, 3, 4 1011.3 

8 triangle 1, 2, 5 368.3 

9 triangle 1, 7, 8 -497.5 

10 triangle 1, 4, 9 35.9 

11 four-point 1, 3, 4, 10 -170.0 

12 four-point 1, 3, 6, 8 200.8 

13 four-point 1, 6, 8, 11 20.8 

14 four-point 1, 3, 4, 9 -874.7 

15 four-point 1, 7, 8, 12 434.5 



Table 7. The results of ground state analysis about (Fe,Ti)S2.

Formula Space group Ti mol% Energy (kJ/mol of atom)

FeS2 13mP 0 -19.423

Fe6TiS12 1P 5.2632 -38.183

Fe2TiS4 C2/m 14.286 -61.64

Fe6Ti4S12 3R 18.182 -68.811

Fe4Ti3S8 C2/m 20 -71.242

FeTiS2 13mP 25 -77.155

Fe8Ti9S18 mR3 25.714 -83.502

Fe6Ti7S14 1P 25.926 -84.632

Fe5Ti6S12 C2/m 26.087 -86.554

Fe4Ti5S10 1P 26.316 -87.66

Fe6Ti8S16 1P 26.667 -89.97

Fe2Ti3S6 3R 27.273 -94.89

Fe4Ti7S14 1P 28 -98.315

Fe2Ti4S8 C2/m 28.571 -102.52

Fe4Ti9S18 1P 29.032 -103.43

FeTi3S6 3R 30 -108.23

Fe2Ti7S14 1P 30.435 -108.87

FeTi4S8 C2/m 30.769 -110.94

TiS2 13mP 33.333 -113.52


