17 research outputs found

    Myosin VI is required for sorting of AP-1B-dependent cargo to the basolateral domain in polarized MDCK cells.

    Get PDF
    In polarized epithelial cells, newly synthesized membrane proteins are delivered on specific pathways to either the apical or basolateral domains, depending on the sorting motifs present in these proteins. Because myosin VI has been shown to facilitate secretory traffic in nonpolarized cells, we investigated its role in biosynthetic trafficking pathways in polarized MDCK cells. We observed that a specific splice isoform of myosin VI with no insert in the tail domain is required for the polarized transport of tyrosine motif containing basolateral membrane proteins. Sorting of other basolateral or apical cargo, however, does not involve myosin VI. Site-directed mutagenesis indicates that a functional complex consisting of myosin VI, optineurin, and probably the GTPase Rab8 plays a role in the basolateral delivery of membrane proteins, whose sorting is mediated by the clathrin adaptor protein complex (AP) AP-1B. Our results suggest that myosin VI is a crucial component in the AP-1B-dependent biosynthetic sorting pathway to the basolateral surface in polarized epithelial cells

    Competing sorting signals guide endolyn along a novel route to lysosomes in MDCK cells

    No full text
    We have examined the trafficking of the mucin-like protein endolyn in transfected, polarized MDCK cells using biochemical approaches and immunofluorescence microscopy. Although endolyn contains a lysosomal targeting motif of the type YXXΦ and was localized primarily to lysosomes at steady state, significant amounts of newly synthesized endolyn were delivered to the apical cell surface. Antibodies to endolyn, but not lamp-2, were preferentially internalized from the apical plasma membrane and efficiently transported to lysosomes. Analysis of endolyn–CD8 chimeras showed that the lumenal domain of endolyn contains apical targeting information that predominates over basolateral information in its cytoplasmic tail. Interestingly, surface polarity of endolyn was independent of O-glycosylation processing, but was reversed by disruption of N-glycosylation using tunicamycin. At all times, endolyn was soluble in cold Triton X-100, suggesting that apical sorting was independent of sphingolipid rafts. Our data indicate that a strong, N-glycan-dependent apical targeting signal in the lumenal domain directs endolyn into a novel biosynthetic pathway to lysosomes, which occurs via the apical surface of polarized epithelial cells

    Two Motifs Target Batten Disease Protein CLN3 to Lysosomes in Transfected Nonneuronal and Neuronal Cells

    No full text
    Batten disease is a neurodegenerative disorder resulting from mutations in CLN3, a polytopic membrane protein, whose predominant intracellular destination in nonneuronal cells is the lysosome. The topology of CLN3 protein, its lysosomal targeting mechanism, and the development of Batten disease are poorly understood. We provide experimental evidence that both the N and C termini and one large loop domain of CLN3 face the cytoplasm. We have identified two lysosomal targeting motifs that mediate the sorting of CLN3 in transfected nonneuronal and neuronal cells: an unconventional motif in the long C-terminal cytosolic tail consisting of a methionine and a glycine separated by nine amino acids [M(X)(9)G], and a more conventional dileucine motif, located in the large cytosolic loop domain and preceded by an acidic patch. Each motif on its own was sufficient to mediate lysosomal targeting, but optimal efficiency required both. Interestingly, in primary neurons, CLN3 was prominently seen both in lysosomes in the cell body and in endosomes, containing early endosomal antigen-1 along neuronal processes. Because there are few lysosomes in axons and peripheral parts of dendrites, the presence of CLN3 in endosomes of neurons may be functionally important. Endosomal association of the protein was independent of the two lysosomal targeting motifs

    Specific N-Glycans Direct Apical Delivery of Transmembrane, but Not Soluble or Glycosylphosphatidylinositol-anchored Forms of Endolyn in Madin-Darby Canine Kidney Cells

    No full text
    The sialomucin endolyn is a transmembrane protein with a unique trafficking pattern in polarized Madin-Darby canine kidney cells. Despite the presence of a cytoplasmic tyrosine motif that, in isolation, is sufficient to mediate basolateral sorting of a reporter protein, endolyn predominantly traverses the apical surface en route to lysosomes. Apical delivery of endolyn is disrupted in tunicamycin-treated cells, implicating a role for N-glycosylation in apical sorting. Site-directed mutagenesis of endolyn's eight N-glycosylation sites was used to identify two N-glycans that seem to be the major determinants for efficient apical sorting of the protein. In addition, apical delivery of endolyn was disrupted when terminal processing of N-glycans was blocked using glycosidase inhibitors. Missorting of endolyn occurred independently of the presence or absence of the basolateral sorting signal, because apical delivery was also inhibited by tunicamycin when the cytoplasmic tyrosine motif was mutated. However, we found that apical secretion of a soluble mutant of endolyn was N-glycan independent, as was delivery of glycosylphosphatidylinositol-anchored endolyn. Thus, specific N-glycans are only essential for the apical sorting of transmembrane endolyn, suggesting fundamental differences in the mechanisms by which soluble, glycosylphosphatidylinositol-anchored, and transmembrane proteins are sorted
    corecore