18 research outputs found

    Low-Stroke Actuation for a Serial Robot

    Get PDF
    A serial robot includes a base, first and second segments, a proximal joint joining the base to the first segment, and a distal joint. The distal joint that joins the segments is serially arranged and distal with respect to the proximal joint. The robot includes first and second actuators. A first tendon extends from the first actuator to the proximal joint and is selectively moveable via the first actuator. A second tendon extends from the second actuator to the distal joint and is selectively moveable via the second actuator. The robot includes a transmission having at least one gear element which assists rotation of the distal joint when an input force is applied to the proximal and/or distal joints by the first and/or second actuators. A robotic hand having the above robot is also disclosed, as is a robotic system having a torso, arm, and the above-described hand

    Robot Arm with Tendon Connector Plate and Linear Actuator

    Get PDF
    A robotic system includes a tendon-driven end effector, a linear actuator, a flexible tendon, and a plate assembly. The linear actuator assembly has a servo motor and a drive mechanism, the latter of which translates linearly with respect to a drive axis of the servo motor in response to output torque from the servo motor. The tendon connects to the end effector and drive mechanism. The plate assembly is disposed between the linear actuator assembly and the tendon-driven end effector and includes first and second plates. The first plate has a first side that defines a boss with a center opening. The second plate defines an accurate through-slot having tendon guide channels. The first plate defines a through passage for the tendon between the center opening and a second side of the first plate. A looped end of the flexible tendon is received within the tendon guide channels

    Planar torsion spring

    Get PDF
    A torsion spring comprises an inner mounting segment. An outer mounting segment is located concentrically around the inner mounting segment. A plurality of splines extends from the inner mounting segment to the outer mounting segment. At least a portion of each spline extends generally annularly around the inner mounting segment

    Actuator and electronics packaging for extrinsic humanoid hand

    Get PDF
    The lower arm assembly for a humanoid robot includes an arm support having a first side and a second side, a plurality of wrist actuators mounted to the first side of the arm support, a plurality of finger actuators mounted to the second side of the arm support and a plurality of electronics also located on the first side of the arm support

    Phalange Tactile Load Cell

    Get PDF
    A tactile load cell that has particular application for measuring the load on a phalange in a dexterous robot system. The load cell includes a flexible strain element having first and second end portions that can be used to mount the load cell to the phalange and a center portion that can be used to mount a suitable contact surface to the load cell. The strain element also includes a first S-shaped member including at least three sections connected to the first end portion and the center portion and a second S-shaped member including at least three sections coupled to the second end portion and the center portion. The load cell also includes eight strain gauge pairs where each strain gauge pair is mounted to opposing surfaces of one of the sections of the S-shaped members where the strain gauge pairs provide strain measurements in six-degrees of freedom

    Robotic Thumb Assembly

    Get PDF
    An improved robotic thumb for a robotic hand assembly is provided. According to one aspect of the disclosure, improved tendon routing in the robotic thumb provides control of four degrees of freedom with only five tendons. According to another aspect of the disclosure, one of the five degrees of freedom of a human thumb is replaced in the robotic thumb with a permanent twist in the shape of a phalange. According to yet another aspect of the disclosure, a position sensor includes a magnet having two portions shaped as circle segments with different center points. The magnet provides a linearized output from a Hall effect sensor

    Human Grasp Assist Device With Exoskeleton

    Get PDF
    A grasp assist system includes a glove, actuator assembly, and controller. The glove includes a digit, i.e., a finger or thumb, and a force sensor. The sensor measures a grasping force applied to an object by an operator wearing the glove. Phalange rings are positioned with respect to the digit. A flexible tendon is connected at one end to one of the rings and is routed through the remaining rings. An exoskeleton positioned with respect to the digit includes hinged interconnecting members each connected to a corresponding ring, and/or a single piece of slotted material. The actuator assembly is connected to another end of the tendon. The controller calculates a tensile force in response to the measured grasping force, and commands the tensile force from the actuator assembly to thereby pull on the tendon. The exoskeleton offloads some of the tensile force from the operator's finger to the glove

    Torque Control of Underactuated Tendon-driven Robotic Fingers

    Get PDF
    A robotic system includes a robot having a total number of degrees of freedom (DOF) equal to at least n, an underactuated tendon-driven finger driven by n tendons and n DOF, the finger having at least two joints, being characterized by an asymmetrical joint radius in one embodiment. A controller is in communication with the robot, and controls actuation of the tendon-driven finger using force control. Operating the finger with force control on the tendons, rather than position control, eliminates the unconstrained slack-space that would have otherwise existed. The controller may utilize the asymmetrical joint radii to independently command joint torques. A method of controlling the finger includes commanding either independent or parameterized joint torques to the controller to actuate the fingers via force control on the tendons

    Robust Operation of Tendon-Driven Robot Fingers Using Force and Position-Based Control Laws

    Get PDF
    A robotic system includes a tendon-driven finger and a control system. The system controls the finger via a force-based control law when a tension sensor is available, and via a position-based control law when a sensor is not available. Multiple tendons may each have a corresponding sensor. The system selectively injects a compliance value into the position-based control law when only some sensors are available. A control system includes a host machine and a non-transitory computer-readable medium having a control process, which is executed by the host machine to control the finger via the force- or position-based control law. A method for controlling the finger includes determining the availability of a tension sensor(s), and selectively controlling the finger, using the control system, via the force or position-based control law. The position control law allows the control system to resist disturbances while nominally maintaining the initial state of internal tendon tensions

    Dexterous Humanoid Robotic Wrist

    Get PDF
    A humanoid robot includes a torso, a pair of arms, a neck, a head, a wrist joint assembly, and a control system. The arms and the neck movably extend from the torso. Each of the arms includes a lower arm and a hand that is rotatable relative to the lower arm. The wrist joint assembly is operatively defined between the lower arm and the hand. The wrist joint assembly includes a yaw axis and a pitch axis. The pitch axis is disposed in a spaced relationship to the yaw axis such that the axes are generally perpendicular. The pitch axis extends between the yaw axis and the lower arm. The hand is rotatable relative to the lower arm about each of the yaw axis and the pitch axis. The control system is configured for determining a yaw angle and a pitch angle of the wrist joint assembly
    corecore