2,662 research outputs found
Electron-Phonon mechanism for Superconductivity in NaCoO: Valence-Band Suhl-Kondo effect Driven by Shear Phonons
To study the possible mechanism of superconductivity in NaCoO,
we examine the interaction between all the relevant optical phonons (breathing
and shear phonons) and -electrons of Co-ions, and study
the transition temperature for a s-wave superconductivity. The obtained is very low when the -valence-bands are far below the Fermi level.
However, is strongly enhanced when the top of the
-valence-bands is close to the Fermi level (say -50meV), thanks to
interband hopping of Cooper pairs caused by shear phonons. This ``valence-band
Suhl-Kondo mechanism'' due to shear phonons is significant to understand the
superconductivity in NaCoO. By the same mechanism, the kink
structure of the band-dispersion observed by ARPES, which indicates the strong
mass-enhancement () due to optical phonons, is also explained.Comment: 5 pages, 4 figures; v2:Added references, published in J. Phys. Soc.
Jp
Spin Dynamics at the Mott Transition and in the Metallic State of the Cs_{3}C_{60} Superconducting Phases
We present here ^{13}C and ^{133}Cs NMR spin lattice relaxation T_{1} data in
the A15 and fcc-Cs_{3}C_{60} phases for increasing hydrostatic pressure through
the transition at p_{c} from a Mott insulator to a superconductor. We evidence
that for p>> p_{c} the (T_{1}T)^{-1} data above T_{c} display metallic like
Korringa constant values which match quantitatively previous data taken on
other A_{3}C_{60} compounds. However below the pressure for which T_{c} goes
through a maximum, (T_{1}T)^{-1} is markedly increased with respect to the
Korringa values expected in a simple BCS scenario. This points out the
importance of electronic correlations near the Mott transition. For p > p_{c}
singular T dependences of (T_{1}T)^{-1} are detected for T >> T_{c}. It will be
shown that they can be ascribed to a large variation with temperature of the
Mott transition pressure p_{c} towards a liquid-gas like critical point, as
found at high T for usual Mott transitions.Comment: 6 pages, 6 figures, submitted to EP
Generalized relation between the relative entropy and dissipation for nonequilibrium systems
Recently, Kawai, Parrondo, and Van den Broeck have related dissipation to
time-reversal asymmetry. We generalized the result by considering a protocol
where the physical system is driven away from an initial thermal equilibrium
state with temperature to a final thermal equilibrium state at a
different temperature. We illustrate the result using a model with an exact
solution, i.e., a particle in a moving one-dimensional harmonic well.Comment: 4 page
Incidence of the Tomonaga-Luttinger liquid state on the NMR spin lattice relaxation in Carbon Nanotubes
We report 13C nuclear magnetic resonance measurements on single wall carbon
nanotube (SWCNT) bundles. The temperature dependence of the nuclear
spin-lattice relaxation rate, 1/T1, exhibits a power-law variation, as expected
for a Tomonage-Luttinger liquid (TLL). The observed exponent is smaller than
that expected for the two band TLL model. A departure from the power law is
observed only at low T, where thermal and electronic Zeeman energy merge.
Extrapolation to zero magnetic field indicates gapless spin excitations. The
wide T range on which power-law behavior is observed suggests that SWCNT is so
far the best realization of a one-dimensional quantum metal.Comment: 5 pages, 4 figure
59Co Nuclear Quadrupole Resonance Studies of Superconducting and Non-superconducting Bilayer Water Intercalated Sodium Cobalt Oxides NaxCoO2.yH2O
We report 59Co nuclear quadrupole resonance (NQR) studies of bilayer water
intercalated sodium cobalt oxides NaxCoO2.yH2O (BLH) with the superconducting
transition temperatures, 2 K < T_c <= 4.6 K, as well as a magnetic BLH sample
without superconductivity. We obtained a magnetic phase diagram of T_c and the
magnetic ordering temperature T_M against the peak frequency nu_3 59Co NQR
transition I_z = +- 5/2 +-7/2 and found a dome shape superconducting phase.
The 59Co NQR spectrum of the non-superconducting BLH shows a broadening below
T_M without the critical divergence of 1/T_1 and 1/T_2, suggesting an
unconventional magnetic ordering. The degree of the enhancement of 1/T_1T at
low temperatures increases with the increase of nu_3 though the optimal
nu_3~12.30 MHz. In the NaxCoO2.yH2O system, the optimal-T_c superconductivity
emerges close to the magnetic instability. T_c is suppressed near the phase
boundary at nu_3~12.50 MHz, which is not a conventional magnetic quantum
critical point.Comment: 4 pages, 5 figure
CoO2-Layer-Thickness Dependence of Magnetic Properties and Possible Two Different Superconducting States in NaxCoO2.yH2O
In order to understand the experimentally proposed phase diagrams of
NaxCoO2.yH2O, we theoretically study the CoO2-layer-thickness dependence of
magnetic and superconducting (SC) properties by analyzing a multiorbital
Hubbard model using the random phase approximation. When the Co valence (s) is
+3.4, we show that the magnetic fluctuation exhibits strong layer-thickness
dependence where it is enhanced at finite (zero) momentum in the thicker
(thinner) layer system. A magnetic order phase appears sandwiched by two SC
phases, consistent with the experiments. These two SC phases have different
pairing states where one is the singlet extended s-wave state and the other is
the triplet p-wave state. On the other hand, only a triplet p-wave SC phase
with dome-shaped behavior of Tc is predicted when s=+3.5, which is also
consistent with the experiments. Controversial experimental results on the
magnetic properties are also discussed.Comment: 5 pages, 4 figures. Submitted to Journal of the Physical Society of
Japa
Anisotropic Behavior of Knight Shift in Superconducting State of Na_xCoO_2yH_2O
The Co Knight shift was measured in an aligned powder sample of
Na_xCoO_2yH_2O, which shows superconductivity at T_c \sim 4.6 K. The
Knight-shift components parallel (K_c) and perpendicular to the c-axis (along
the ab plane K_{ab}) were measured in both the normal and superconducting (SC)
states. The temperature dependences of K_{ab} and K_c are scaled with the bulk
susceptibility, which shows that the microscopic susceptibility deduced from
the Knight shift is related to Co-3d spins. In the SC state, the Knight shift
shows an anisotropic temperature dependence: K_{ab} decreases below 5 K,
whereas K_c does not decrease within experimental accuracy. This result raises
the possibility that spin-triplet superconductivity with the spin component of
the pairs directed along the c-axis is realized in Na_xCoO_2yH_2O.Comment: 5 pages, 5 figures, to be published in Journal of Physical Society of
Japan vol. 75, No.
Specific Heat and Superfluid Density for Possible Two Different Superconducting States in NaxCoO2.yH2O
Several thermodynamic measurements for the cobaltate superconductor,
NaxCoO2.yH2O, have so far provided results inconsistent with each other. In
order to solve the discrepancies, we microscopically calculate the temperature
dependences of specific heat and superfluid density for this superconductor. We
show that two distinct specific-heat data from Oeschler et al. and Jin et al.
are reproduced, respectively, for the extended s-wave state and the p-wave
state. Two different superfluid-density data are also reproduced for each case.
These support our recent proposal of possible two different pairing states in
this material. In addition, we discuss the experimentally proposed large
residual Sommerfeld coefficient and extremely huge effective carrier mass.Comment: 5 pages, 4 figures, Submitted to J. Phys. Soc. Jp
Weak Magnetic Order in the Bilayered-hydrate NaCoOHO Structure Probed by Co Nuclear Quadrupole Resonance - Proposed Phase Diagram in Superconducting NaCoO HO
A weak magnetic order was found in a non-superconducting bilayered-hydrate
NaCoOHO sample by a Co Nuclear Quadrupole Resonance
(NQR) measurement. The nuclear spin-lattice relaxation rate divided by
temperature shows a prominent peak at 5.5 K, below which a Co-NQR peak
splits due to an internal field at the Co site. From analyses of the Co NQR
spectrum at 1.5 K, the internal field is evaluated to be 300 Oe and is
in the -plane. The magnitude of the internal field suggests that the
ordered moment is as small as using the hyperfine coupling
constant reported previously. It is shown that the NQR frequency
correlates with magnetic fluctuations from measurements of NQR spectra and
in various samples. The higher- sample has the stronger
magnetic fluctuations. A possible phase diagram in NaCoOHO is depicted using and , in which the crystal distortion
along the c-axis of the tilted CoO octahedron is considered to be a
physical parameter. Superconductivity with the highest is seemingly
observed in the vicinity of the magnetic phase, suggesting strongly that the
magnetic fluctuations play an important role for the occurrence of the
superconductivity.Comment: 5 pages, 6 figures, submitted to J. Phys. Soc. Jp
Current perspectives on prevention of vascular cognitive impairment and promotion of vascular brain health
\ua9 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. Introduction: The true global burden of vascular cognitive impairment (VCI) is unknown. Reducing risk factors for stroke and cardiovascular disease would inevitably curtail VCI. Areas Covered: The authors review current diagnosis, epidemiology, and risk factors for VCI. VCI increases in older age and by inheritance of known genetic traits. They emphasize modifiable risk factors identified by the 2020 Lancet Dementia Commission. The most profound risks for VCI also include lower education, cardiometabolic factors, and compromised cognitive reserve. Finally, they discuss pharmacological and non-pharmacological interventions. Expert Opinion: By virtue of the high frequencies of stroke and cardiovascular disease the global prevalence of VCI is expectedly higher than prevalent neurodegenerative disorders causing dementia. Since ~ 90% of the global burden of stroke can be attributed to modifiable risk factors, a formidable opportunity arises to reduce the burden of not only stroke but VCI outcomes including progression from mild to the major in form of vascular dementia. Strict control of vascular risk factors and secondary prevention of cerebrovascular disease via pharmacological interventions will impact on burden of VCI. Non-pharmacological measures by adopting healthy diets and encouraging physical and cognitive activities and urging multidomain approaches are important for prevention of VCI and preservation of vascular brain health
- …