5 research outputs found

    Influence of Stacking Morphology and Edge Nitrogen Doping on the Dielectric Performance of Grapheneā€“Polymer Nanocomposites

    No full text
    We demonstrate that functional groups obtained by varying the preparation route of reduced graphene oxide (rGO) highly influence filler morphology and the overall dielectric performance of rGO-relaxor ferroelectric polymer nanocomposite. Specifically, we show that nitrogen-doping by hydrazine along the edges of reduced graphene oxide embedded in polyĀ­(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) results in a dielectric permittivity above 10ā€‰000 while maintaining a dielectric loss below 2. This is one of the best-reported dielectric constant/dielectric loss performance values. In contrast, rGO produced by the hydrothermal reduction route shows a much lower enhancement, reaching a maximum dielectric permittivity of 900. Furthermore, functional derivatives present in rGO are found to strongly affect the quality of dispersion and the resultant percolation threshold at low loading levels. However, high leakage currents and lowered breakdown voltages offset the advantages of increased capacitance in these ultrahigh-k systems, resulting in no significant improvement in stored energy density

    Metal-Free, Single-Polymer Device Exhibits Resistive Memory Effect

    No full text
    All-polymer, write-once-read-many times resistive memory devices have been fabricated on flexible substrates using a single polymer, poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS). Spin-cast or inkjet-printed films of solvent-modified PEDOT:PSS are used as electrodes, while the unmodified or as-is PEDOT:PSS is used as the semiconducting active layer. The all-polymer devices exhibit an irreversible but stable transition from a low resistance state (ON) to a high resistance state (OFF) at low voltages caused by an electric-field-induced morphological rearrangement of PEDOT and PSS at the electrode interface. However, in the metalā€“PEDOT:PSSā€“metal devices, we have shown a metal filament formation switching the device from an initial high resistance state (OFF) to the low resistance state (ON). The all-PEDOT:PSS memory device has low write voltages (<3 V), high ON/OFF ratio (>10<sup>3</sup>), good retention characteristics (>10ā€‰000 s), and stability in ambient storage (>3 months)

    Anomalous Li Storage Capability in Atomically Thin Two-Dimensional Sheets of Nonlayered MoO<sub>2</sub>

    No full text
    Since the first exfoliation and identification of graphene in 2004, research on layered ultrathin two-dimensional (2D) nanomaterials has achieved remarkable progress. Realizing the special importance of 2D geometry, we demonstrate that the controlled synthesis of nonlayered nanomaterials in 2D geometry can yield some unique properties that otherwise cannot be achieved in these nonlayered systems. Herein, we report a systematic study involving theoretical and experimental approaches to evaluate the Li-ion storage capability in 2D atomic sheets of nonlayered molybdenum dioxide (MoO<sub>2</sub>). We develop a novel monomer-assisted reduction process to produce high quality 2D sheets of nonlayered MoO<sub>2</sub>. When used as lithium-ion battery (LIB) anodes, these ultrathin 2D-MoO<sub>2</sub> electrodes demonstrate extraordinary reversible capacity, as high as 1516 mAh g<sup>ā€“1</sup> after 100 cycles at the current rate of 100 mA g<sup>ā€“1</sup> and 489 mAh g<sup>ā€“1</sup> after 1050 cycles at 1000 mA g<sup>ā€“1</sup>. It is evident that these ultrathin 2D sheets did not follow the normal intercalation-cum-conversion mechanism when used as LIB anodes, which was observed for their bulk analogue. Our ex situ XPS and XRD studies reveal a Li-storage mechanism in these 2D-MoO<sub>2</sub> sheets consisting of an intercalation reaction and the formation of metallic Li phase. In addition, the 2D-MoO<sub>2</sub> based microsupercapacitors exhibit high areal capacitance (63.1 mF cm<sup>ā€“2</sup> at 0.1 mA cm<sup>ā€“2</sup>), good rate performance (81% retention from 0.1 to 2 mA cm<sup>ā€“2</sup>), and superior cycle stability (86% retention after 10,000 cycles). We believe that our work identifies a new pathway to make 2D nanostructures from nonlayered compounds, which results in an extremely enhanced energy storage capability

    Carbon Dioxide Hydrogenation over a Metal-Free Carbon-Based Catalyst

    No full text
    The hydrogenation of CO<sub>2</sub> into useful chemicals provides an industrial-scale pathway for CO<sub>2</sub> recycling. The lack of effective thermochemical catalysts currently precludes this process, since it is challenging to identify structures that can simultaneously exhibit high activity and selectivity for this reaction. Here, we report, for the first time, the use of nitrogen-doped graphene quantum dots (NGQDs) as metal-free catalysts for CO<sub>2</sub> hydrogenation. The nitrogen dopants, located at the edge sites, play a key role in inducing thermocatalytic activity in carbon nanostructures. Furthermore, the thermocatalytic activity and selectivity of NGQDs are governed by the doped N configurations and their corresponding defect density. The increase of pydinic N concentration at the edge site of NGQDs leads to lower initial reaction temperature for CO<sub>2</sub> reduction and also higher CO<sub>2</sub> conversion and selectivity toward CH<sub>4</sub> over CO

    Hybrid MoS<sub>2</sub>/h-BN Nanofillers As Synergic Heat Dissipation and Reinforcement Additives in Epoxy Nanocomposites

    No full text
    Two-dimensional (2D) nanomaterials as molybdenum disulfide (MoS<sub>2</sub>), hexagonal boron nitride (h-BN), and their hybrid (MoS<sub>2</sub>/h-BN) were employed as fillers to improve the physical properties of epoxy composites. Nanocomposites were produced in different concentrations and studied in their microstructure, mechanical and thermal properties. The hybrid 2D mixture imparted efficient reinforcement to the epoxy leading to increases of up to 95% in tensile strength, 60% in ultimate strain, and 58% in Youngā€™s modulus. Moreover, an enhancement of 203% in thermal conductivity was achieved for the hybrid composite as compared to the pure polymer. The incorporation of MoS<sub>2</sub>/h-BN mixture nanofillers in epoxy resulted in nanocomposites with multifunctional characteristics for applications that require high mechanical and thermal performance
    corecore