13 research outputs found

    Transition absorption as a mechanism of surface photoelectron emission from metals

    Get PDF
    Transition absorption of electromagnetic field energy by an electron passing through a boundary between two media with different dielectric permittivities is considered both classically and quantum mechanically. It is shown that transition absorption can make a substantial contribution to the process of electron photoemission from metals due to the surface photoelectric effect.Comment: 4 pages, 3 figure

    Spontaneous hot-electron light emission from electron-fed optical antennas

    Full text link
    Nanoscale electronics and photonics are among the most promising research areas providing functional nano-components for data transfer and signal processing. By adopting metal-based optical antennas as a disruptive technological vehicle, we demonstrate that these two device-generating technologies can be interfaced to create an electronically-driven self-emitting unit. This nanoscale plasmonic transmitter operates by injecting electrons in a contacted tunneling antenna feedgap. Under certain operating conditions, we show that the antenna enters a highly nonlinear regime in which the energy of the emitted photons exceeds the quantum limit imposed by the applied bias. We propose a model based upon the spontaneous emission of hot electrons that correctly reproduces the experimental findings. The electron-fed optical antennas described here are critical devices for interfacing electrons and photons, enabling thus the development of optical transceivers for on-chip wireless broadcasting of information at the nanoscale

    Coherent surface plasmon amplification through the dissipative instability of 2D direct current

    No full text
    We propose an original concept for on-chip excitation and amplification of surface plasmon polaritons. Our approach, named nanoresotron, utilizes the collective effect of dissipative instability of a 2D direct current flowing in vicinity of a metal surface. The instability arises through the excitation of self-consistent plasma oscillations and results in the creation of a pair of collective surface electromagnetic modes in addition to conventional plasmon resonances. We derive the dispersion equations for these modes using self-consistent solutions of Maxwell’s and 2D hydrodynamics equations. We find that the phase velocities of these new collective modes are close to the drift velocity of 2D electrons. We demonstrate that the slow mode is amplified while the fast mode exhibits absorption. Estimates indicate that very high gain are attainable, which makes the nanoresotron a promising scheme to electrically excite and regenerate surface plasmon polaritons

    A New Insight into High-Aspect-Ratio Channel Drilling in Translucent Dielectrics with a KrF Laser for Waveguide Applications

    No full text
    A new insight into capillary channel formation with a high aspect ratio in the translucent matter by nanosecond UV laser pulses is discussed based on our experiments on KrF laser multi-pulse drilling of polymethyl methacrylate and K8 silica glass. The proposed mechanism includes self-consistent laser beam filamentation along a small UV light penetration depth caused by a local refraction index increase due to material densification by both UV and ablation pressure, followed by filamentation-assisted ablation. A similar mechanism was shown to be realized in highly transparent media, i.e., KU-1 glass with a multiphoton absorption switched on instead of linear absorption. Waveguide laser beam propagation in long capillary channels was considered for direct electron acceleration by high-power laser pulses and nonlinear compression of excimer laser pulses into the picosecond range

    Stimulated Thermal Scattering in Two-Photon Absorbing Nanocolloids under Laser Radiation of Nanosecond-to-Picosecond Pulse Widths

    No full text
    Recent discoveries in nonlinear optical properties of nanoparticle colloids make actual the challenge to lower the energy threshold of phase conjugation and move it into the domain of shorter pulse widths. A novel effect of the stimulated Rayleigh-Mie scattering (SRMS) in two-photon absorbing nanocolloids is considered as a promising answer to this challenge. We report the results of experimental and theoretical study of the two-photon-assisted SRMS in Ag and ZnO nanocolloids in the nanosecond-to-picosecond pulse width domain. For 12 ns 0.527 μm laser pulses, the four-wave mixing SRMS scheme provides lasing and amplification of backscattered anti-Stokes signal in Ag nanocolloids in toluene at the threshold 0.2 mJ and the spectral shifts up to 150 MHz. For 100 ps 0.532 μm pulses, we observed for the first time efficient (over 50% in signal-to-pump ratio of pulse energies) SRMS backscattering of the anti-Stokes signal in Ag nanocolloids in toluene and predominantly Stokes signal in ZnO nanocolloids in water, with the spectral shifts up to 0.25 cm−1. We develop the first order-in-perturbation model of the four-wave mixing two-photon absorption-assisted SRMS process which shows that at nanosecond pulses, amplification is predominantly due to the thermal-induced coherent oscillations of polarization while the slow temperature wave acts also as a dynamic spatial grating which provides a self-induced optical cavity inside the interaction region. At a picosecond pulse width, according to our model, the spectral overlap between pump and signal pulses results in formation of only the dynamic spatial temperature grating, and we succeeded at recovering the linear growth of the spectral shift with the pump power near the threshold

    Monochromatic Conical IR Emission from Decaying KrF Laser Filaments in Xenon as Coherent Stimulated Four-Wave Mixing Process

    No full text
    We develop theoretical background for the new nonlinear optical phenomenon of narrowly directed monochromatic IR conical emission which has been recently observed when 248-nm UV filaments propagate in xenon (V. D. Zvorykin, et al., Laser Phys. Lett. 13, 125404 (2016)). We treat it as coherent stimulated four-wave mixing process in which two pump KrF laser photons are converted into the coupled pair of resonance IR(828 nm) and VUV (147 nm) photons through 5p5(2P3/2)6p[1/2]0→5p5(2P3/2)6s[3/2]1o and 5p5(2P3/2)6s[3/2]1o→1S0 transitions. We explore the coherent interaction regime which proceeds at a time scale shorter than transverse relaxation time T2. The momentum and energy conservation laws determine the characteristic angle of conical emission. We find that the threshold of this coherent process is determined by the KrF laser pump pulse area
    corecore