17 research outputs found

    Intertwined chiral charge orders and topological stabilization of the light-induced state of a prototypical transition metal dichalcogenide

    Get PDF
    The fundamental idea that the constituents of interacting many body systems in complex quantum materials may self-organise into long range order under highly non-equilibrium conditions leads to the notion that entirely new and unexpected functionalities might be artificially created. However, demonstrating new emergent order in highly non-equilibrium transitions has proven surprisingly difficult. In spite of huge recent advances in experimental ultrafast time-resolved techniques, methods that average over successive transition outcomes have so far proved incapable of elucidating the emerging spatial structure. Here, using scanning tunneling microscopy, we report for the first time the charge order emerging after a single transition outcome in a prototypical two-dimensional dichalcogenide 1T-TaS2_2 initiated by a single optical pulse. By mapping the vector field of charge displacements of the emergent state, we find surprisingly intricate, long-range, topologically non-trivial charge order in which chiral domain tiling is intertwined with unique unpaired dislocations which play a crucial role in enhancing the emergent states remarkable stability. The discovery of the principles that lead to metastability in charge-ordered systems open the way to designing novel emergent functionalities, particularly ultrafast all-electronic non-volatile cryo-memories.Comment: preprint version of the paper published in npj Quantum Material

    Quantum billiards with correlated electrons confined in triangular transition metal dichalcogenide monolayer nanostructures created by laser quench

    Full text link
    Forcing systems though fast non-equilibrium phase transitions offers the opportunity to study new states of quantum matter that self-assemble in their wake. Here we study the quantum interference effects of correlated electrons confined in monolayer quantum nanostructures, created by femtosecond laser-induced quench through a first-order polytype structural transition in a layered transition-metal dichalcogenide material. Scanning tunnelling microscopy of the electrons confined within equilateral triangles, whose dimensions are a few crystal unit cells on the side, reveals that the trajectories are strongly modified from free-electron states both by electronic correlations and confinement. Comparison of experiments with theoretical predictions of strongly correlated electron behaviour reveals that the confining geometry destabilizes the Wigner/Mott crystal ground state, resulting in mixed itinerant and correlation-localized states intertwined on a length scale of 1 nm. Occasionally, itinerant-electron states appear to follow quantum interferences which are suggestive of classical trajectories (quantum scars). The work opens the path toward understanding the quantum transport of electrons confined in atomic-scale monolayer structures based on correlated-electron-materials
    corecore