42 research outputs found

    Metropolis-Hastings thermal state sampling for numerical simulations of Bose-Einstein condensates

    Get PDF
    We demonstrate the application of the Metropolis-Hastings algorithm to sampling of classical thermal states of one-dimensional Bose-Einstein quasicondensates in the classical fields approximation, both in untrapped and harmonically trapped case. The presented algorithm can be easily generalized to higher dimensions and arbitrary trap geometry. For truncated Wigner simulations the quantum noise can be added with conventional methods (half a quantum of energy in every mode). The advantage of the presented method over the usual analytical and stochastic ones lies in its ability to sample not only from canonical and grand canonical distributions, but also from the generalized Gibbs ensemble, which can help to shed new light on thermodynamics of integrable systems.Comment: 13 pages, 4 figure

    Degenerate Bose gases with uniform loss

    Full text link
    We theoretically investigate a weakly-interacting degenerate Bose gas coupled to an empty Markovian bath. We show that in the universal phononic limit the system evolves towards an asymptotic state where an emergent temperature is set by the quantum noise of the outcoupling process. For situations typically encountered in experiments, this mechanism leads to significant cooling. Such dissipative cooling supplements conventional evaporative cooling and dominates in settings where thermalization is highly suppressed, such as in a one-dimensional quasicondensate.Comment: 9 pages, 5 figures, open access publicatio
    corecore