7 research outputs found

    Optical Aharonov-Bohm effect in stacked type-II quantum dots

    Full text link
    Excitons in vertically stacked type-II quantum dots experience the topological magnetic phase and demonstrate the Aharonov-Bohm oscillations in the emission intensity. Photoluminescence of vertically stacked ZnTe/ZnSe quantum dots is measured in magnetic fields up to 31 T. The Aharonov-Bohm oscillations are found in the magnetic-field dependence of emission intensity. The positions of the peaks of the emission intensity are in a good agreement with numerical simulations of excitons in stacked quantum dots.Comment: 15 page

    Origin of defect-related green emission from ZnO nanoparticles: effect of surface modification

    Get PDF
    We investigated the optical properties of colloidal-synthesized ZnO spherical nanoparticles prepared from 1-octadecene (OD), a mixture of trioctylamine (TOA) and OD (1:10), and a mixture of trioctylphosphine oxide (TOPO) and OD (1:12). It is found that the green photoluminescence (PL) of samples from the mixture of TOA/OD and TOPO/OD is largely suppressed compared with that from pure OD. Moreover, it is found that all spherical nanoparticles have positive zeta potential, and spherical nanoparticles from TOA/OD and TOPO/OD have a smaller zeta potential than those from OD. A plausible explanation is that oxygen vacancies, presumably located near the surface, contribute to the green PL, and the introduction of TOA and TOPO will reduce the density of oxygen vacancies near the surfaces. Assuming that the green emission arises due to radiative recombination between deep levels formed by oxygen vacancies and free holes, we estimate the size of optically active spherical nanoparticles from the spectral energy of the green luminescence. The results are in good agreement with results from TEM. Since this method is independent of the degree of confinement, it has a great advantage in providing a simple and practical way to estimate the size of spherical nanoparticles of any size. We would like to point out that this method is only applicable for samples with a small size distribution

    Distinguishability of stacks in ZnTe/ZnSe quantum dots via spectral analysis of Aharonov-Bohm oscillations

    No full text
    A spectral analysis of the Aharonov-Bohm (AB) oscillations in photoluminescence intensity was performed for stacked type-II ZnTe/ZnSe quantum dots (QDs) fabricated within multilayered Zn-Se-Te system with sub-monolayer insertions of Te. Robust AB oscillations allowed for fine probing of distinguishable QDs stacks within the ensemble of QDs. The AB transition magnetic field, BAB, changed from the lower energy side to the higher energy side of the PL spectra revealing the presence of different sets of QDs stacks. The change occurs within the spectral range, where the contributing green and blue bands of the spectra overlapped. “Bundling” in lifetime measurements is seen at transition spectral regions confirming the results
    corecore