3 research outputs found

    Conversion of Phenol and Lignin as Components of Renewable Raw Materials on Pt and Ru-Supported Catalysts

    No full text
    Hydrogenation of phenol in aqueous solutions on Pt-Ni/SiO2, Pt-Ni-Cr/Al2O3, Pt/C, and Ru/C catalysts was studied at temperatures of 150–250 °C and pressures of 40–80 bar. The possibility of hydrogenation of hydrolysis lignin in an aqueous medium in the presence of a Ru/C catalyst is shown. The conversion of hydrolysis lignin and water-soluble sodium lignosulfonate occurs with the formation of a complex mixture of monomeric products: a number of phenols, products of their catalytic hydrogenation (cyclohexanol and cyclohexanone), and hydrogenolysis products (cyclic and aliphatic C2–C7 hydrocarbons)

    Modification of the Ceramic Implant Surfaces from Zirconia by the Magnetron Sputtering of Different Calcium Phosphate Targets: A Comparative Study

    No full text
    In this study, thin calcium phosphate (Ca-P) coatings were deposited on zirconia substrates by radiofrequency (RF) magnetron sputtering using different calcium phosphate targets (calcium phosphate tribasic (CPT), hydroxyapatite (HA), calcium phosphate monobasic, calcium phosphate dibasic dehydrate (DCPD) and calcium pyrophosphate (CPP) powders). The sputtering of calcium phosphate monobasic and DCPD powders was carried out without an inert gas in the self-sustaining plasma mode. The physico-chemical, mechanical and biological properties of the coatings were investigated. Cell adhesion on the coatings was examined using mesenchymal stem cells (MSCs). The CPT coating exhibited the best cell adherence among all the samples, including the uncoated zirconia substrate. The cells were spread uniformly over the surfaces of all samples
    corecore