5 research outputs found

    Impurity Scattering in Luttinger Liquid with Electron-Phonon Coupling

    Get PDF
    We study the influence of electron-phonon coupling on electron transport through a Luttinger liquid with an embedded weak scatterer or weak link. We derive the renormalization group (RG) equations which indicate that the directions of RG flows can change upon varying either the relative strength of the electron-electron and electron-phonon coupling or the ratio of Fermi to sound velocities. This results in the rich phase diagram with up to three fixed points: an unstable one with a finite value of conductance and two stable ones, corresponding to an ideal metal or insulator.Comment: 4 pages, 2 figure

    Formation of Electronic Nematic Phase in Interacting Systems

    Full text link
    We study the formation of an electronic nematic phase characterized by a broken point-group symmetry in interacting fermion systems within the weak coupling theory. As a function of interaction strength and chemical potential, the phase transition between the isotropic Fermi liquid and nematic phase is first order at zero temperature and becomes second order at a finite temperature. The transition is present for all typical, including quasi-2D, electronic dispersions on the square lattice and takes place for arbitrarily small interaction when at van Hove filling, thus suppressing the Lifshitz transition. In connection with the formation of the nematic phase, we discuss the origin of the first order transition and competition with other broken symmetry states.Comment: revtex4, 6 pages, 6 figures; revised introduction, updated reference

    Parquet solution for a flat Fermi surface

    Full text link
    We study instabilities occurring in the electron system whose Fermi surface has flat regions on its opposite sides. Such a Fermi surface resembles Fermi surfaces of some high-TcT_c superconductors. In the framework of the parquet approximation, we classify possible instabilities and derive renormalization-group equations that determine the evolution of corresponding susceptibilities with decreasing temperature. Numerical solutions of the parquet equations are found to be in qualitative agreement with a ladder approximation. For the repulsive Hubbard interaction, the antiferromagnetic (spin-density-wave) instability dominates, but when the Fermi surface is not perfectly flat, the dd-wave superconducting instability takes over.Comment: REVTeX, 36 pages, 20 ps figures inserted via psfig. Submitted to Phys. Rev.

    Spintronics: Fundamentals and applications

    Get PDF
    Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes from the published versio
    corecore