9 research outputs found

    Room-temperature strong coupling in a single photon emitter-metasurface system

    No full text
    Data used to plot the main Figures in the manuscrip

    Photoluminescent SiC Tetrapods

    No full text
    Recently, significant research efforts have been made to develop complex nanostructures to provide more sophisticated control over the optical and electronic properties of nanomaterials. However, there are only a handful of semiconductors that allow control over their geometry via simple chemical processes. Herein, we present a molecularly seeded synthesis of a complex nanostructure, SiC tetrapods, and report on their structural and optical properties. The SiC tetrapods exhibit narrow line width photoluminescence at wavelengths spanning the visible to near-infrared spectral range. Synthesized from low-toxicity, earth abundant elements, these tetrapods are a compelling replacement for technologically important quantum optical materials that frequently require toxic metals such as Cd and Se. This previously unknown geometry of SiC nanostructures is a compelling platform for biolabeling, sensing, spintronics, and optoelectronics

    Radiation-Induced Damage and Recovery of Ultra-Nanocrystalline Diamond: Toward Applications in Harsh Environments

    No full text
    Ultra-nanocrystalline diamond (UNCD) is increasingly being used in the fabrication of devices and coatings due to its excellent tribological properties, corrosion resistance, and biocompatibility. Here, we study its response to irradiation with kiloelectronvolt electrons as a controlled model for extreme ionizing environments. Real time Raman spectroscopy reveals that the radiation-damage mechanism entails dehydrogenation of UNCD grain boundaries, and we show that the damage can be recovered by annealing at 883 K. Our results have significant practical implications for the implementation of UNCD in extreme environment applications, and indicate that the films can be used as radiation sensors

    Electroluminescence from Localized Defects in Zinc Oxide: Toward Electrically Driven Single Photon Sources at Room Temperature

    No full text
    Single photon sources are required for a wide range of applications in quantum information science, quantum cryptography, and quantum communications. However, the majority of room temperature emitters to date are only excited optically, which limits their proper integration into scalable devices. In this work, we overcome this limitation and present room temperature electrically driven light emission from localized defects in zinc oxide (ZnO) nanoparticles and thin films. The devices emit in the red spectral range and show excellent rectifying behavior. The emission is stable over an extensive period of time, providing an important prerequisite for practical devices. Our results open possibilities for building new ZnO-based quantum integrated devices that incorporate solid-state single photon sources for quantum information technologies

    Engineering Quantum Light Sources with Flat Optics

    No full text
    Quantum light sources are essential building blocks for many quantum technologies, enabling secure communication, powerful computing, precise sensing and imaging. Recent advancements have witnessed a significant shift towards the utilization of ``flat" optics with thickness at subwavelength scales for the development of quantum light sources. This approach offers notable advantages over conventional bulky counterparts, including compactness, scalability, and improved efficiency, along with added functionalities. This review focuses on the recent advances in leveraging flat optics to generate quantum light sources. Specifically, we explore the generation of entangled photon pairs through spontaneous parametric down-conversion in nonlinear metasurfaces, as well as single photon emission from quantum emitters including quantum dots and color centers in 3D and 2D materials. The review covers theoretical principles, fabrication techniques, and properties of these sources, with particular emphasis on the enhanced generation and engineering of quantum light sources using optical resonances supported by nanostructures. We discuss the diverse application range of these sources and highlight the current challenges and perspectives in the field

    Room Temperature Quantum Emission from Cubic Silicon Carbide Nanoparticles

    No full text
    The photoluminescence (PL) arising from silicon carbide nanoparticles has so far been associated with the quantum confinement effect or to radiative transitions between electronically active surface states. In this work we show that cubic phase silicon carbide nanoparticles with diameters in the range 45–500 nm can host other point defects responsible for photoinduced intrabandgap PL. We demonstrate that these nanoparticles exhibit single photon emission at room temperature with record saturation count rates of 7 × 10<sup>6</sup> counts/s. The realization of nonclassical emission from SiC nanoparticles extends their potential use from fluorescence biomarker beads to optically active quantum elements for next generation quantum sensing and nanophotonics. The single photon emission is related to single isolated SiC defects that give rise to states within the bandgap

    Scalable Bright and Pure Single Photon Sources by Droplet Epitaxy on InP Nanowire Arrays

    No full text
    High-quality quantum light sources are crucial components for the implementation of practical and reliable quantum technologies. The persistent challenge, however, is the lack of scalable and deterministic single photon sources that can be synthesized reproducibly. Here, we present a combination of droplet epitaxy with selective area epitaxy to realize the deterministic growth of single quantum dots in nanowire arrays. By optimization of the single quantum dot growth and the nanowire cavity design, single emissions are effectively coupled with the dominant mode of the nanowires to realize Purcell enhancement. The resonance-enhanced quantum emitter system boasts a brightness of millions of counts per second with nanowatt excitation power, a short radiation lifetime of 350 ± 5 ps, and a high single-photon purity with g(2)(0) value of 0.05 with continuous wave above-band excitation. Finite-difference time-domain (FDTD) simulation results show that the emissions of single quantum dots are coupled into the TM01 mode of the nanowires, giving a Purcell factor ≈ 3. Our technology can be used for creating on-chip scalable single photon sources for future quantum technology applications including quantum networks, quantum computation, and quantum imaging

    Dual-Band Coupling of Phonon and Surface Plasmon Polaritons with Vibrational and Electronic Excitations in Molecules

    No full text
    Strong coupling (SC) between light and matter excitations bears intriguing potential for manipulating material properties. Typically, SC has been achieved between mid-infrared (mid-IR) light and molecular vibrations or between visible light and excitons. However, simultaneously achieving SC in both frequency bands remains unexplored. Here, we introduce polaritonic nanoresonators (formed by h-BN layers on Al ribbons) hosting surface plasmon polaritons (SPPs) at visible frequencies and phonon polaritons (PhPs) at mid-IR frequencies, which simultaneously couple to excitons and molecular vibrations in an adjacent layer of CoPc molecules, respectively. Employing near-field optical nanoscopy, we demonstrate the colocalization of near fields at both visible and mid-IR frequencies. Far-field transmission spectroscopy of the nanoresonator structure covered with a layer of CoPc molecules shows clear mode splittings in both frequency ranges, revealing simultaneous SPP–exciton and PhP–vibron coupling. Dual-band SC may offer potential for manipulating coupling between exciton and molecular vibration in future optoelectronics, nanophotonics, and quantum information applications
    corecore