38 research outputs found
A spectral, quasi-cylindrical and dispersion-free Particle-In-Cell algorithm
We propose a spectral Particle-In-Cell (PIC) algorithm that is based on the
combination of a Hankel transform and a Fourier transform. For physical
problems that have close-to-cylindrical symmetry, this algorithm can be much
faster than full 3D PIC algorithms. In addition, unlike standard
finite-difference PIC codes, the proposed algorithm is free of numerical
dispersion. This algorithm is benchmarked in several situations that are of
interest for laser-plasma interactions. These benchmarks show that it avoids a
number of numerical artifacts, that would otherwise affect the physics in a
standard PIC algorithm - including the zero-order numerical Cherenkov effect.Comment: 23 pages, 8 figure
Laser-plasma interactions with a Fourier-Bessel Particle-in-Cell method
A new spectral particle-in-cell (PIC) method for plasma modeling is presented
and discussed. In the proposed scheme, the Fourier-Bessel transform is used to
translate the Maxwell equations to the quasi-cylindrical spectral domain. In
this domain, the equations are solved analytically in time, and the spatial
derivatives are approximated with high accuracy. In contrast to the
finite-difference time domain (FDTD) methods that are commonly used in PIC, the
developed method does not produce numerical dispersion, and does not involve
grid staggering for the electric and magnetic fields. These features are
especially valuable in modeling the wakefield acceleration of particles in
plasmas. The proposed algorithm is implemented in the code PLARES-PIC, and the
test simulations of laser plasma interactions are compared to the ones done
with the quasi-cylindrical FDTD PIC code CALDER-CIRC.Comment: submitted to Phys. Plasma
All-optical Compton scattering at shallow interaction angles
All-optical Compton sources combine laser-wakefield accelerators and intense scattering pulses to generate ultrashort bursts of backscattered radiation. The scattering pulse plays the role of a small-period undulator (∼1μm) in which relativistic electrons oscillate and emit X-ray radiation. To date, most of the working laser-plasma accelerators operate preferably at energies of a few hundreds of megaelectronvolts and the Compton sources developed so far produce radiation in the range from hundreds of kiloelectronvolts to a few megaelectronvolts. However, for such applications as medical imaging and tomography the relevant energy range is 10–100 keV. In this article, we discuss different scattering geometries for the generation of X-rays in this range. Through numerical simulations, we study the influence of electron beam parameters on the backscattered photons. We find that the spectral bandwidth remains constant for beams of the same emittance regardless of the scattering geometry. A shallow interaction angle of 30∘ or less seems particularly promising for imaging applications given parameters of existing laser-plasma accelerators. Finally, we discuss the influence of the radiation properties for potential applications in medical imaging and non-destructive testing
Revealing Josephson vortex dynamics in proximity junctions below critical current
Made of a thin non-superconducting metal (N) sandwiched by two
superconductors (S), SNS Josephson junctions enable novel quantum
functionalities by mixing up the intrinsic electronic properties of N with the
superconducting correlations induced from S by proximity. Electronic properties
of these devices are governed by Andreev quasiparticles [1] which are absent in
conventional SIS junctions whose insulating barrier (I) between the two S
electrodes owns no electronic states. Here we focus on the Josephson vortex
(JV) motion inside Nb-Cu-Nb proximity junctions subject to electric currents
and magnetic fields. The results of local (Magnetic Force Microscopy) and
global (transport) experiments provided simultaneously are compared with our
numerical model, revealing the existence of several distinct dynamic regimes of
the JV motion. One of them, identified as a fast hysteretic entry/escape below
the critical value of Josephson current, is analyzed and suggested for
low-dissipative logic and memory elements.Comment: 11 pages, 3 figures, 1 table, 43 reference
Recommended from our members
LASY: LAser manipulations made eaSY
Using realistic laser profiles for simulations of laser-plasma interaction is
critical to reproduce experimental measurements, but the interface between
experiments and simulations can be challenging. Similarly, start-to-end
simulations with different codes may require error-prone manipulations to
convert between different representations of a laser pulse. In this work, we
propose LASY, an open-source Python library to simplify these workflows.
Developed through an international collaboration between experimental,
theoretical and computational physicists, LASY can be used to initialize a
laser profile from an experimental measurement, from a simulation, or from
analytics, manipulate it, and write it into a file in compliance with the
openPMD standard. This profile can then be used as an input of a simulation
code
All-optical Compton scattering at shallow interaction angles
International audienceAll-optical Compton sources combine laser-wakefield accelerators and intense scattering pulses to generate ultrashort bursts of backscattered radiation. The scattering pulse plays the role of a small-period undulator (∼1 µm) in which relativistic electrons oscillate and emit X-ray radiation. To date, most of the working laser-plasma accelerators operate preferably at energies of a few hundreds of megaelectronvolts and the Compton sources developed so far produce radiation in the range from hundreds of kiloelectronvolts to a few megaelectronvolts. However, for such applications as medical imaging and tomography the relevant energy range is 10-100 keV. In this article, we discuss different scattering geometries for the generation of X-rays in this range. Through numerical simulations, we study the influence of electron beam parameters on the backscattered photons. We find that the spectral bandwidth remains constant for beams of the same emittance regardless of the scattering geometry. A shallow interaction angle of 30 • or less seems particularly promising for imaging applications given parameters of existing laser-plasma accelerators. Finally, we discuss the influence of the radiation properties for potential applications in medical imaging and non-destructive testing
Identifying observable carrier-envelope phase effects in laser wakefield acceleration with near-single-cycle pulses
International audienceDriving laser wakefield acceleration with extremely short, near single-cycle laser pulses is crucial to the realization of an electron source that can operate at kHz-repetition rate while relying on modest laser energy. It is also interesting from a fundamental point of view, as the ponderomotive approximation is no longer valid for such short pulses. Through particle-in-cell simulations, we show how the plasma response becomes asymmetric in the plane of laser polarization, and dependent on the carrier-envelope phase (CEP) of the laser pulse. For the case of self-injection, this in turn strongly affects the initial conditions of injected electrons, causing collective betatron oscillations of the electron beam. As a result, the electron beam pointing, electron energy spectrum, and the direction of emitted betatron radiation become CEP dependent. For injection in a density gradient, the effect on beam pointing is reduced and the electron energy spectrum is CEP independent, as electron injection is mostly longitudinal and mainly determined by the density gradient. Our results highlight the importance of controlling the CEP in this regime for producing stable and reproducible relativistic electron beams and identify how CEP effects may be observed in experiments. In the future, CEP control may become an additional tool to control the energy spectrum or pointing of the accelerated electron beam
Quasi-monoenergetic multi-GeV electron acceleration in a plasma waveguide
International audienceLaser-plasma accelerators present a promising alternative to conventional accelerators. To fully exploit the extreme amplitudes of the plasma fields and produce high-quality beams, precise control over electron injection into the accelerating structure is required, along with effective laser pulse guiding to extend the acceleration length. Recent studies have demonstrated efficient guiding and acceleration using hydrodynamic optically field-ionized (OFI) plasma channels. This guiding technique has also been combined with controlled electron injection to produce high-quality electron beams at the GeV level using a 50 TW laser. The present work extends these results to higher laser energies, demonstrating the generation of quasi-monoenergetic electron beams with peak energies exceeding 2 GeV, for a PW-class laser
Axiparabola: a new tool for high-intensity optics
Abstract
An axiparabola is a reflective aspherical optics that focuses a light beam into an extended focal line. The light intensity and group velocity profiles along the focus are adjustable through the proper design. The on-axis light velocity can be controlled, for instance, by adding spatio-temporal couplings via chromatic optics on the incoming beam. Therefore the energy deposition along the axis can be either subluminal or superluminal as required in various applications. This article first explores how the axiparabola design defines its properties in the geometric optics approximation. Then the obtained description is considered in numerical simulations for two cases of interest for laser-plasma acceleration. We show that the axiparabola can be used either to generate a plasma waveguide to overcome diffraction or for driving a dephasingless wakefield accelerator.</jats:p
