103 research outputs found

    Surface of metal as an indicator of fatigue damage

    Get PDF
    Advances in Military Technology, Vol. 8, No. 2, December 2013The possibility of fatigue damage analysis by the extrusion/intrusion structures on the surface of aluminium alloy is shown. Quantitative characteristics of the extrusion/intrusion structures and the methods for their monitoring are substantiated. Two approaches for fatigue analysis are presented: a) direct inspection of the aircraft components, b) application of fatigue sensors

    Surface roughness effect on ultracold neutron interaction with a wall and implications for computer simulations

    Get PDF
    We review the diffuse scattering and the loss coefficient in ultracold neutron reflection from slightly rough surfaces, report a surprising reduction in loss coefficient due to roughness, and discuss the possibility of transition from quantum treatment to ray optics. The results are used in a computer simulation of neutron storage in a recent neutron lifetime experiment that re-ported a large discrepancy of neutron lifetime with the current particle data value. Our partial re-analysis suggests the possibility of systematic effects that were not included in this publication.Comment: 39 pages, 9 figures; additional calculations include

    Surface of metal as an indicator of fatigue damage

    Get PDF
    Advances in Military Technology, Vol. 8, No. 2, December 2013The possibility of fatigue damage analysis by the extrusion/intrusion structures on the surface of aluminium alloy is shown. Quantitative characteristics of the extrusion/intrusion structures and the methods for their monitoring are substantiated. Two approaches for fatigue analysis are presented: a) direct inspection of the aircraft components, b) application of fatigue sensors

    Анализ эффСктивности Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ извлСчСния диоксида ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π° ΠΈΠ· ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ² сгорания

    Get PDF
    The main purpose of the article is to compare and analyze existing technologies for extracting carbon dioxide from combustion products in relation to mini-CHP plants operating on local fuels. The article presents a brief overview of the main technical features of the implementation of carbon dioxide extraction technologies from gas mixtures. The specific features and limitations for each of the methods are shown. Mathematical modeling of technological processes of adsorption, physical and chemical absorption is carried out on the basis of Aspen Hysys and Aspen Adsorption software packages. When modeling absorption processes, the composition of combustion products characteristic of the actual operating conditions of an energy source on wood chips was considered, while for the adsorption process, the composition of combustion products was simulated by a binary mixture of carbon dioxide and nitrogen with a molar content of 11 and 89 %, respectively. The results of numerical research that were obtained have shown that the highest degree of carbon dioxide extraction from combustion products is 97 %, and it is achieved in the optimal mode of implementation of chemical absorption technology. With the same method, the highest degree of purity of the resulting carbon dioxide is observed, viz. 86 % taking into account water vapor and 99 % if it is dry. The least effective technology for extracting carbon dioxide was the method of physical absorption in a fixed bed, in which the degree of purity of the resulting dry carbon dioxide was 79 %. Therefore, for practical use in the deep utilization of combustion products of mini-CHP plants operating on local fuels, to obtain carbon dioxide with a low content of impurities, it is necessary to apply the method of chemical absorption. The use of physical absorption technology in a fixed bed can be used to reduce energy source emissions or in cases where the degree of purity of carbon dioxide does not matter.Основная Ρ†Π΅Π»ΡŒ ΡΡ‚Π°Ρ‚ΡŒΠΈ – сравнСниС ΠΈ Π°Π½Π°Π»ΠΈΠ· ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ извлСчСния диоксида ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π° ΠΈΠ· ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ² сгорания ΠΌΠΈΠ½ΠΈ-Π’Π­Π¦, Ρ€Π°Π±ΠΎΡ‚Π°ΡŽΡ‰ΠΈΡ… Π½Π° мСстных Π²ΠΈΠ΄Π°Ρ… Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π°. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½ ΠΊΡ€Π°Ρ‚ΠΊΠΈΠΉ ΠΎΠ±Π·ΠΎΡ€ основных тСхничСских особСнностСй Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ извлСчСния углСкислоты ΠΈΠ· Π³Π°Π·ΠΎΠ²Ρ‹Ρ… смСсСй. ΠŸΠΎΠΊΠ°Π·Π°Π½Ρ‹ особСнности ΠΈ ограничСния примСнСния ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΈΠ· ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ². На Π±Π°Π·Π΅ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½Ρ‹Ρ… ΠΏΠ°ΠΊΠ΅Ρ‚ΠΎΠ² Aspen Hysys ΠΈ Aspen Adsorption Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΎ матСматичСскоС ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ тСхнологичСских процСссов адсорбции, физичСской ΠΈ химичСской абсорбции. ΠŸΡ€ΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ абсорбционных процСссов рассматривался состав ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ² сгорания, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹ΠΉ для Ρ€Π΅Π°Π»ΡŒΠ½Ρ‹Ρ… условий Ρ€Π°Π±ΠΎΡ‚Ρ‹ энСргоисточника Π½Π° дрСвСсной Ρ‰Π΅ΠΏΠ΅, Π° ΠΏΡ€ΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ адсорбционного процСсса состав ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ² сгорания имитировался Π±ΠΈΠ½Π°Ρ€Π½ΠΎΠΉ смСсью ΠΈΠ· диоксида ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π° ΠΈ Π°Π·ΠΎΡ‚Π° с ΠΌΠΎΠ»ΡŒΠ½Ρ‹ΠΌ содСрТаниСм 11 ΠΈ 89 % соотвСтствСнно. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ числСнного исслСдования ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ наибольшая ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ извлСчСния диоксида ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π° ΠΈΠ· ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ² сгорания составляСт 97 % ΠΈ достигаСтся Π² ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠΌ Ρ€Π΅ΠΆΠΈΠΌΠ΅ Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ химичСской абсорбции. ΠŸΡ€ΠΈ этом ΠΆΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Π΅ Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ наибольшая ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ чистоты ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ диоксида ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π°: 86 % с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ ΠΏΠ°Ρ€ΠΎΠ² Π²ΠΎΠ΄Ρ‹ ΠΈ 99 % сухого. НаимСнСС эффСктивной Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠ΅ΠΉ извлСчСния углСкислоты оказался ΠΌΠ΅Ρ‚ΠΎΠ΄ физичСской абсорбции, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ чистоты ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ сухого диоксида ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π° составила 79 %. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, для получСния диоксида ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π° с Π½Π΅Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ содСрТаниСм примСсСй Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄ химичСской абсорбции. ВСхнология физичСской абсорбции Π² Π½Π΅ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΠΌ слоС ΠΌΠΎΠΆΠ΅Ρ‚ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ для сниТСния выбросов энСргоисточника ΠΈΠ»ΠΈ Π² случаях, ΠΊΠΎΠ³Π΄Π° ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ чистоты углСкислоты Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ значСния

    Анализ эффСктивности Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ производства Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π° Π½Π° ΠΌΠΈΠ½ΠΈ-Π’Π­Π¦ Π½Π° мСстных Π²ΠΈΠ΄Π°Ρ… Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π° тСрмохимичСским ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ

    Get PDF
    Within the framework of the policy of β€œdecarbonization” of the economy, a technology for hydrogen producing from local fuels (LF) and combustible waste of human activity is proposed as a part of the development of the functionality of heating cycles of energy production. The aim of the present study is to evaluate the energy efficiency of a steam-powered mini-CHP plant operating on local fuels with a thermochemical hydrogen production module. A brief literature review of thermochemical cycles of hydrogen production is presented, and it is shown that hybrid copper-chlorine Cu–Cl cycles are recognized as the most promising. In the Aspen Hysys software environment, a mathematical model of a mini-CHP plant with a five-stage hydrogen production cycle was synthesized, which can later be used as a component in the digital twin. According to the results of the analysis of the mathematical model, it was determined that the specific consumption of electric energy per 1 kg of hydrogen for such a scheme will be 9.11 (kWΓ—h)/kg, which is on average more than five times less than in the production of hydrogen by electrolysis, the rest of the required energy is replaced by thermal one, while the maximum fuel utilization factor of mini-CHP with a hydrogen production module using wood waste as fuel amounted to 83.1 %, including a thermal efficiency of 51.5 %, the efficiency of hydrogen production at the lowest calorific value is 31Β %, the electrical efficiency for the supply of electricity to the grid is 0.6 %. For comparison, the maximum fuel utilization of a steam-powered mini-CHP of the same electrical capacity reaches 90.9 %. The expansion of mini-CHP options operating on local fuels by introducing a hydrogen production unit by hybrid thermochemical method into its scheme makes it possible to increase the maneuverability of the station, which implies the possibility of organizing the operation of mini-CHP in accordance with the requirements of thermal consumers and electrical graph-reducing the loads of the power system during the hours of maxima and minima of its consumption by changing the electrical power supply to the network or increasing the power consumption of electricity from the external network to the power required for hydrogen production. In conclusion, the possibility of developing the studied scheme of a mini-CHP operating on local fuels towards further utilization of combustion products in order to generate artificial natural gas, which in this case can be called β€œgreen”, is indicated.Π’ Ρ€Π°ΠΌΠΊΠ°Ρ… ΠΏΠΎΠ»ΠΈΡ‚ΠΈΠΊΠΈ «обСзуглСроТивания» экономики прСдлагаСтся тСхнология получСния Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π° ΠΈΠ· мСстных Π²ΠΈΠ΄ΠΎΠ² Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π° ΠΈ Π³ΠΎΡ€ΡŽΡ‡ΠΈΡ… ΠΎΡ‚Ρ…ΠΎΠ΄ΠΎΠ² чСловСчСской Π΄Π΅ΡΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π² Ρ€Π°ΠΌΠΊΠ°Ρ… развития Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Ρ‚Π΅ΠΏΠ»ΠΎΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Ρ†ΠΈΠΊΠ»ΠΎΠ² производства энСргии. ЦСлью исслСдования являСтся ΠΎΡ†Π΅Π½ΠΊΠ° энСргСтичСской эффСктивности паросиловой ΠΌΠΈΠ½ΠΈ-Π’Π­Π¦, Ρ€Π°Π±ΠΎΡ‚Π°ΡŽΡ‰Π΅ΠΉ Π½Π° мСстных Π²ΠΈΠ΄Π°Ρ… Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π°, с ΠΌΠΎΠ΄ΡƒΠ»Π΅ΠΌ производства Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π° тСрмохимичСским способом. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½ ΠΊΡ€Π°Ρ‚ΠΊΠΈΠΉ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹ΠΉ ΠΎΠ±Π·ΠΎΡ€ тСрмохимичСских Ρ†ΠΈΠΊΠ»ΠΎΠ² производства Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π° ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ пСрспСктивными ΡΡ‡ΠΈΡ‚Π°ΡŽΡ‚ΡΡ Π³ΠΈΠ±Ρ€ΠΈΠ΄Π½Ρ‹Π΅ Ρ†ΠΈΠΊΠ»Ρ‹ мСдь-Ρ…Π»ΠΎΡ€ Cu–Cl. Π’ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠΉ срСдС Aspen Hysys Π±Ρ‹Π»Π° синтСзирована матСматичСская модСль ΠΌΠΈΠ½ΠΈ-Π’Π­Π¦ с пятиступСнчатым Ρ†ΠΈΠΊΠ»ΠΎΠΌ производства Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π°, которая ΠΌΠΎΠΆΠ΅Ρ‚ Π² дальнСйшСм Π±Ρ‹Ρ‚ΡŒ использована ΠΊΠ°ΠΊ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ Π² составС Ρ†ΠΈΡ„Ρ€ΠΎΠ²ΠΎΠ³ΠΎ Π΄Π²ΠΎΠΉΠ½ΠΈΠΊΠ°. По Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌ Π°Π½Π°Π»ΠΈΠ·Π° матСматичСской ΠΌΠΎΠ΄Π΅Π»ΠΈ Π±Ρ‹Π»ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΡƒΠ΄Π΅Π»ΡŒΠ½ΠΎΠ΅ ΠΏΠΎΡ‚Ρ€Π΅Π±Π»Π΅Π½ΠΈΠ΅ элСктричСской энСргии Π½Π° 1 ΠΊΠ³ Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π° для Ρ‚Π°ΠΊΠΎΠΉ схСмы составит 9,11 (ΠΊΠ’Ρ‚βˆ™Ρ‡)/ΠΊΠ³, Ρ‡Ρ‚ΠΎ Π² срСднСм Π² ΠΏΡΡ‚ΡŒ Ρ€Π°Π· мСньшС, Ρ‡Π΅ΠΌ ΠΏΡ€ΠΈ производствС Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π° элСктролизом, ΠΎΡΡ‚Π°Π»ΡŒΠ½Π°Ρ Ρ‡Π°ΡΡ‚ΡŒ Ρ‚Ρ€Π΅Π±ΡƒΠ΅ΠΌΠΎΠΉ энСргии Π·Π°ΠΌΠ΅Ρ‰Π΅Π½Π° Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠΉ, ΠΏΡ€ΠΈ этом ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ коэффициСнт использования Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π° ΠΌΠΈΠ½ΠΈ-Π’Π­Π¦ с ΠΌΠΎΠ΄ΡƒΠ»Π΅ΠΌ производства Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π°, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‰Π΅ΠΉ Π² качСствС Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π° ΠΎΡ‚Ρ…ΠΎΠ΄Ρ‹ дрСвСсины, составил 83,1Β %, Π² Ρ‚ΠΎΠΌ числС Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠΉ ΠšΠŸΠ” составляСт 51,5 %, ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ производства Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π° ΠΏΠΎ низшСй Ρ‚Π΅ΠΏΠ»ΠΎΡ‚Π΅ сгорания – 31%, элСктричСский ΠšΠŸΠ” ΠΏΠΎ отпуску элСктроэнСргии Π² ΡΠ΅Ρ‚ΡŒ – 0,6 %. Для сравнСния ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ коэффициСнт использования Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π° паросиловой ΠΌΠΈΠ½ΠΈ-Π’Π­Π¦ Ρ‚ΠΎΠΉ ΠΆΠ΅ элСктричСской мощности достигаСт 90,9Β %. Π Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΠ΅ ΠΎΠΏΡ†ΠΈΠΉ ΠΌΠΈΠ½ΠΈ-Π’Π­Π¦ Π½Π° мСстных Π²ΠΈΠ΄Π°Ρ… Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π° ΠΏΡƒΡ‚Π΅ΠΌ Π²Π²ΠΎΠ΄Π° Π² Π΅Π΅ схСму Π±Π»ΠΎΠΊΠ° производства Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π° Π³ΠΈΠ±Ρ€ΠΈΠ΄Π½Ρ‹ΠΌ тСрмохимичСским ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ позволяСт ΠΏΠΎΠ²Ρ‹ΡΠΈΡ‚ΡŒ ΠΌΠ°Π½Π΅Π²Ρ€Π΅Π½Π½ΠΎΡΡ‚ΡŒ станции, Ρ‡Ρ‚ΠΎ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅Ρ‚ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ функционирования ΠΌΠΈΠ½ΠΈ-Π’Π­Π¦ Π² соотвСтствии с трСбованиями Ρ‚Π΅ΠΏΠ»ΠΎΠ²Ρ‹Ρ… ΠΏΠΎΡ‚Ρ€Π΅Π±ΠΈΡ‚Π΅Π»Π΅ΠΉ и элСктричСского Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Π½Π°Π³Ρ€ΡƒΠ·ΠΎΠΊ энСргосистСмы Π² часы максимумов ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠΎΠ² Π΅Π΅ потрСблСния Π·Π° счСт измСнСния элСктричСской мощности отпуска Π² ΡΠ΅Ρ‚ΡŒ ΠΈΠ»ΠΈ увСличСния мощности потрСблСния элСктроэнСргии ΠΈΠ· внСшнСй сСти Π΄ΠΎ мощности, Ρ‚Ρ€Π΅Π±ΡƒΠ΅ΠΌΠΎΠΉ для производства Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π°. Π’ Π·Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ указываСтся Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ развития исслСдуСмой схСмы ΠΌΠΈΠ½ΠΈ-Π’Π­Π¦ Π½Π° мСстных Π²ΠΈΠ΄Π°Ρ… Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π° Π² сторону дальнСйшСй ΡƒΡ‚ΠΈΠ»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ² сгорания с Ρ†Π΅Π»ΡŒΡŽ Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ искусствСнного ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π³Π°Π·Π°, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Π² этом случаС ΠΌΠΎΠΆΠ½ΠΎ Π½Π°Π·Π²Π°Ρ‚ΡŒ Β«Π·Π΅Π»Π΅Π½Ρ‹ΠΌΒ»

    Neutron lifetime measurements using gravitationally trapped ultracold neutrons

    Full text link
    Our experiment using gravitationally trapped ultracold neutrons (UCN) to measure the neutron lifetime is reviewed. Ultracold neutrons were trapped in a material bottle covered with perfluoropolyether. The neutron lifetime was deduced from comparison of UCN losses in the traps with different surface-to-volume ratios. The precise value of the neutron lifetime is of fundamental importance to particle physics and cosmology. In this experiment, the UCN storage time is brought closer to the neutron lifetime than in any experiments before:the probability of UCN losses from the trap was only 1% of that for neutron beta decay. The neutron lifetime obtained,878.5+/-0.7stat+/-0.3sys s, is the most accurate experimental measurement to date.Comment: 38 pages, 19 figures,changed conten

    Coherent Schwinger Interaction from Darboux Transformation

    Full text link
    The exactly solvable scalar-tensor potential of the four-component Dirac equation has been obtained by the Darboux transformation method. The constructed potential has been interpreted in terms of nucleon-nucleon and Schwinger interactions of neutral particles with lattice sites during their channeling Hamiltonians of a Schwinger type is obtained by means of the Darboux transformation chain. The analitic structure of the Lyapunov function of periodic continuation for each of the Hamiltonians of the family is considered.Comment: 12 pages, Latex, six figures; six sections, one figure adde

    О цСлСсообразности ΡΡ‚Ρ€ΠΎΠΈΡ‚Π΅Π»ΡŒΡΡ‚Π²Π° ΠΌΠΈΠ½ΠΈ-Π’Π­Π¦ Π½Π° мСстных Π²ΠΈΠ΄Π°Ρ… Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π° Π² условиях РСспублики Π‘Π΅Π»Π°Ρ€ΡƒΡΡŒ. Π§Π°ΡΡ‚ΡŒ 2. Роль ΠΌΠΈΠ½ΠΈ-Π’Π­Π¦ Π² систСмах тСплоснабТСния Π³ΠΎΡ€ΠΎΠ΄ΠΎΠ² ΠΈ насСлСнных ΠΏΡƒΠ½ΠΊΡ‚ΠΎΠ² БСларуси

    Get PDF
    . Within the framework of ensuring the country's energy security and pursuing a policy of decarbonization of the economy in the Republic of Belarus, it is assumed to maximize the use of its own fuel and energy resources (TER). However, the question of choosing the type of heat source in centralized heat supplyΒ  systems when using local fuels (LF) remains open. Β The commissioning of the Belarusian Nuclear Power Plant and the relatively high unit cost of power generation capacities running on LF inclines the scales to use boiler houses as heat sources. Based on the world experience in the development and application of heating as the most energy-efficient solution in the field of heat supply, this problem has been studied in the conditions of Belarus. It is shown that the electric capacity of mini-thermal power plants using traditional LF connected to the unified system of the country is less than 100 MW, and the main technologies implemented at mini-thermal power plants using LF in the Republic of Belarus are traditional steam power plants with water steam as the working fluid (11 power plants) and steam power plant with organic Rankine cycle (ORC) (3 power plants). Geographically, mini- thermal power plants operating on LF are located evenly throughout the entire territory of the Republic of Belarus. The number of hours of use of the installed capacity of renewable energy sources (RES) of the Republic of Belarus has been determined. Energy sources based on organic waste and biomass (over 4,000 hours per year) and on hydro resources (about 3,500 hours per year) have a clear advantage, for which indicator of the number of hours of installed capacity use is much higher than for solar and wind power installations. In addition, biomass generating capacities have the lowest coefficient of electricity supply to the combined Β energy system. Based on the analysis of modern trends in the development of energy, technical and economic β€œattractiveness factors” for the construction of heating systems for heat supply on LF in the conditions of Belarus have been formulated, which, in addition to traditional factors (substitution of imported fuel – natural gas and oil), include improvement of the quality and reliability of energy supply to consumers in remote locations, development of polygeneration, reduction of losses Β of electric energy for its transport, participation in covering the electric load schedule of the unified power system, and also indicated the possibility of creating an energy hub on the basis of a mini-thermal power plant, structured for the integration Β of energy sub-sectors, distributed generation sources and the option of generating β€œgreen” energy carriers.Π’ Ρ€Π°ΠΌΠΊΠ°Ρ… обСспСчСния энСргСтичСской бСзопасности страны ΠΈ провСдСния ΠΏΠΎΠ»ΠΈΡ‚ΠΈΠΊΠΈ Π΄Π΅ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΈΠ·Π°Ρ†ΠΈΠΈ экономики Π² РСспубликС Π‘Π΅Π»Π°Ρ€ΡƒΡΡŒ прСдполагаСтся максимальноС использованиС собствСнных Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π½ΠΎ-энСргСтичСских рСсурсов (Π’Π­Π ). Однако ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚Ρ‹ΠΌ остаСтся вопрос Π²Ρ‹Π±ΠΎΡ€Π° Π²ΠΈΠ΄Π° тСплоисточника Π² систСмах Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ тСплоснабТСния ΠΏΡ€ΠΈ использовании мСстных Π²ΠΈΠ΄ΠΎΠ² Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π° (ΠœΠ’Π’). Π’Π²ΠΎΠ΄ Π² ΡΠΊΡΠΏΠ»ΡƒΠ°Ρ‚Π°Ρ†ΠΈΡŽ БСлорусской АЭБ ΠΈ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ высокая ΡƒΠ΄Π΅Π»ΡŒΠ½Π°Ρ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒ ΡΠ»Π΅ΠΊΡ‚Ρ€ΠΎΠ³Π΅Π½Π΅Ρ€ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… мощностСй Π½Π° ΠœΠ’Π’ ΡΠΊΠ»ΠΎΠ½ΡΡŽΡ‚ Ρ‡Π°ΡˆΡƒ вСсов ΠΊ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡŽ Β Π² качСствС тСплоисточников ΠΊΠΎΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ…. Π˜ΡΡ…ΠΎΠ΄Ρ ΠΈΠ· ΠΌΠΈΡ€ΠΎΠ²ΠΎΠ³ΠΎ ΠΎΠΏΡ‹Ρ‚Π° развития ΠΈ примСнСния Ρ‚Π΅ΠΏΠ»ΠΎΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΊΠ°ΠΊ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ энСргоэффСктивного Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π² области тСплоснабТСния, исслСдована данная ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° Π² условиях РСспублики Π‘Π΅Π»Π°Ρ€ΡƒΡΡŒ. Показано, Ρ‡Ρ‚ΠΎ элСктричСская ΠΌΠΎΡ‰Π½ΠΎΡΡ‚ΡŒ ΠΌΠΈΠ½ΠΈ-Π’Π­Π¦ Π½Π° Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠœΠ’Π’, ΠΏΠΎΠ΄ΠΊΠ»ΡŽΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΊ объСдинСнной систСмС страны, составляСт ΠΌΠ΅Π½Π΅Π΅ 100 ΠœΠ’Ρ‚, Π° основными тСхнологиями, Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹ΠΌΠΈ Π½Π° ΠΌΠΈΠ½ΠΈ-Π’Π­Π¦ Π½Π° ΠœΠ’Π’ Β Π² РСспубликС Π‘Π΅Π»Π°Ρ€ΡƒΡΡŒ, ΡΠ²Π»ΡΡŽΡ‚ΡΡ Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½Ρ‹Π΅ ПБУ с водяным ΠΏΠ°Ρ€ΠΎΠΌ Π² качСствС Ρ€Π°Π±ΠΎΡ‡Π΅Π³ΠΎ Ρ‚Π΅Π»Π° (11 элСктростанций) ΠΈ ПБУ с органичСским Ρ†ΠΈΠΊΠ»ΠΎΠΌ Π Π΅Π½ΠΊΠΈΠ½Π° (ОРЦ) (3 элСктростанции). ГСографичСски ΠΌΠΈΠ½ΠΈ-Π’Π­Π¦, Ρ€Π°Π±ΠΎΡ‚Π°ΡŽΡ‰ΠΈΠ΅ Π½Π° ΠœΠ’Π’, располоТСны Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ ΠΏΠΎ всСй Ρ‚Π΅Ρ€Ρ€ΠΈΡ‚ΠΎΡ€ΠΈΠΈ РСспублики Π‘Π΅Π»Π°Ρ€ΡƒΡΡŒ. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΎ число часов использования установлСнной мощности возобновляСмых источников энСргии РСспублики Π‘Π΅Π»Π°Ρ€ΡƒΡΡŒ. Π―Π²Π½ΠΎΠ΅ прСимущСство ΠΈΠΌΠ΅ΡŽΡ‚ энСргоисточники Π½Π° органичСских ΠΎΡ‚Ρ…ΠΎΠ΄Π°Ρ… ΠΈ биомассС (ΡΠ²Ρ‹ΡˆΠ΅ 4000 Ρ‡/Π³ΠΎΠ΄) ΠΈ Π½Π° гидрорСсурсах (ΠΎΠΊΠΎΠ»ΠΎ 3500 Ρ‡/Π³ΠΎΠ΄), для ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒ числа часов использования установлСнной мощности Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π²Ρ‹ΡˆΠ΅, Ρ‡Π΅ΠΌ для установок солнСчной ΠΈ Π²Π΅Ρ‚Ρ€ΠΎΠ²ΠΎΠΉ энСргСтики. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, Π³Π΅Π½Π΅Ρ€ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ мощности Π½Π° биомассС ΠΈΠΌΠ΅ΡŽΡ‚ наимСньший коэффициСнт поставки элСктроэнСргии Π² ΠžΠ±ΡŠΠ΅Π΄ΠΈΠ½Π΅Π½Π½ΡƒΡŽ ΡΠ½Π΅Ρ€Π³Π΅Ρ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ систСму БСларуси. На основС Π°Π½Π°Π»ΠΈΠ·Π° соврСмСнных Ρ‚Π΅Π½Π΄Π΅Π½Ρ†ΠΈΠΉ развития энСргСтики сформулированы Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΎ-экономичСскиС Β«Ρ„Π°ΠΊΡ‚ΠΎΡ€Ρ‹ ΠΏΡ€ΠΈΠ²Π»Π΅ΠΊΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈΒ» ΡΡ‚Ρ€ΠΎΠΈΡ‚Π΅Π»ΡŒΡΡ‚Π²Π° Ρ‚Π΅ΠΏΠ»ΠΎΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… систСм тСплоснабТСния Π½Π° ΠœΠ’Π’ Π² условиях БСларуси, ΠΊ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ, ΠΏΠΎΠΌΠΈΠΌΠΎ Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² (Π·Π°ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ ΠΈΠΌΠΏΠΎΡ€Ρ‚ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠ³ΠΎ Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π° – ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π³Π°Π·Π° ΠΈ Π½Π΅Ρ„Ρ‚ΠΈ), относятся  ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ качСства ΠΈ надСТности энСргообСспСчСния ΠΏΠΎΡ‚Ρ€Π΅Π±ΠΈΡ‚Π΅Π»Π΅ΠΉ Π² ΡƒΠ΄Π°Π»Π΅Π½Π½Ρ‹Ρ… Ρ‚ΠΎΡ‡ΠΊΠ°Ρ…, Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ ΠΏΠΎΠ»ΠΈΠ³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ, сниТСниС ΠΏΠΎΡ‚Π΅Ρ€ΡŒ элСктричСской энСргии Π½Π° Π΅Π΅ транспорт, участиС Π² ΠΏΠΎΠΊΡ€Ρ‹Ρ‚ΠΈΠΈ элСктричСского Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Π½Π°Π³Ρ€ΡƒΠ·ΠΎΠΊ объСдинСнной энСргосистСмы, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΡƒΠΊΠ°Π·Π°Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ создания Π½Π° Π±Π°Π·Π΅ ΠΌΠΈΠ½ΠΈ-Π’Π­Π¦ энСргСтичСского Ρ…Π°Π±Π°, структурированного ΠΏΠΎΠ΄ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Ρ†ΠΈΡŽ энСргСтичСских подотраслСй, источников распрСдСлСнной Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ ΠΈ ΠΎΠΏΡ†ΠΈΡŽ Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ Β«Π·Π΅Π»Π΅Π½Ρ‹Ρ…Β» энСргоноситСлСй

    О цСлСсообразности ΡΡ‚Ρ€ΠΎΠΈΡ‚Π΅Π»ΡŒΡΡ‚Π²Π° ΠΌΠΈΠ½ΠΈ-Π’Π­Π¦ Π½Π° мСстных Π²ΠΈΠ΄Π°Ρ… Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π° Π² условиях РСспублики Π‘Π΅Π»Π°Ρ€ΡƒΡΡŒ. Π§Π°ΡΡ‚ΡŒ 1. БостояниС использования мСстных Π²ΠΈΠ΄ΠΎΠ² Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π° Π² систСмах тСплоснабТСния

    Get PDF
    As part of ensuring the country's energy security and pursuing a policy of decarbonization of the economy in the Republic of Belarus, the maximum use of its own fuel and energy resources (FER) is expected. However, the questionΒ of choosing the type of heat source in centralized heat supply systems when using local fuels (LF) remains open. The commissioning of the Belarusian Nuclear Power Plant and the relatively high specific cost of electricity generating capacities using local fuels tip the scales to the use of boiler houses as heat sources. However, world experience in the development and application of heating, as the most energy-efficient solution in the field of heat supply, requires a more thorough study of this problem. The paper presents an overview of the use of local fuels in Belarus and a number of European countries with developed centralized heat supply. Based on the analysis of open source data, the paper provides information on the state of use of local fuels in district heating systems of the Republic of Belarus and a number of European countries that have experience in the widespread use of solid biomass and where it constitutes a significant share in the structure of thermal and electrical energy production in relation to other fuel and energy resources. The main aspects of the energy programs of a number of European countries with the largest share of thermal and electrical energy generation using local fuels are presented. It has been revealed that the energy program of Finland is of the greatest interest for Belarus, where the share of nuclear energy in the structure of electrical energy production, just like in the Republic of Belarus, is approaching to 40 % and the energy strategy assumes an increase in the share of thermal power plants using local fuels in the structure of heat and electricity generation.Π’ Ρ€Π°ΠΌΠΊΠ°Ρ… обСспСчСния энСргСтичСской бСзопасности страны ΠΈ провСдСния ΠΏΠΎΠ»ΠΈΡ‚ΠΈΠΊΠΈ Π΄Π΅ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΈΠ·Π°Ρ†ΠΈΠΈ экономики Π² РСспубликС Π‘Π΅Π»Π°Ρ€ΡƒΡΡŒ прСдполагаСтся максимальноС использованиС собствСнных Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π½ΠΎ-энСргСтичСских рСсурсов (Π’Π­Π ). Однако ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚Ρ‹ΠΌ остаСтся вопрос Π²Ρ‹Π±ΠΎΡ€Π° Π²ΠΈΠ΄Π° тСплоисточника Π² систСмах Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ тСплоснабТСния ΠΏΡ€ΠΈ использовании мСстных Π²ΠΈΠ΄ΠΎΠ² Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π° (ΠœΠ’Π’). Π’Π²ΠΎΠ΄ Π² ΡΠΊΡΠΏΠ»ΡƒΠ°Ρ‚Π°Ρ†ΠΈΡŽ БСлорусской АЭБ ΠΈ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ высокая ΡƒΠ΄Π΅Π»ΡŒΠ½Π°Ρ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒ ΡΠ»Π΅ΠΊΡ‚Ρ€ΠΎΠ³Π΅Π½Π΅Ρ€ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… мощностСй Π½Π° ΠœΠ’Π’ склоняСт Ρ‡Π°ΡˆΡƒ вСсов ΠΊ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡŽ Π² качСствС тСплоисточников ΠΊΠΎΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ…. Однако ΠΌΠΈΡ€ΠΎΠ²ΠΎΠΉ ΠΎΠΏΡ‹Ρ‚ развития ΠΈ примСнСния Ρ‚Π΅ΠΏΠ»ΠΎΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ, ΠΊΠ°ΠΊ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ энСргоэффСктивного Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π² области тСплоснабТСния, Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ Π±ΠΎΠ»Π΅Π΅ Ρ‚Ρ‰Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ исслСдования Π΄Π°Π½Π½ΠΎΠΉ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ прСдставлСн ΠΎΠ±Π·ΠΎΡ€ ΠΏΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡŽ ΠœΠ’Π’ Π² БСларуси ΠΈ рядС СвропСйских стран с Ρ€Π°Π·Π²ΠΈΡ‚Ρ‹ΠΌ Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ тСплоснабТСниСм, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π½Π° основС Π°Π½Π°Π»ΠΈΠ·Π° Π΄Π°Π½Π½Ρ‹Ρ… ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚Ρ‹Ρ… источников прСдставлСна информация ΠΏΠΎ ΡΠΎΡΡ‚ΠΎΡΠ½ΠΈΡŽ примСнСния ΠœΠ’Π’ Π² систСмах Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ тСплоснабТСния РСспублики Π‘Π΅Π»Π°Ρ€ΡƒΡΡŒ ΠΈ ряда СвропСйских стран, ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΡ… ΠΎΠΏΡ‹Ρ‚ Π² ΡˆΠΈΡ€ΠΎΠΊΠΎΠΌ использовании Ρ‚Π²Π΅Ρ€Π΄ΠΎΠΉ биомассы ΠΈ Π³Π΄Π΅ ΠΎΠ½Π° составляСт ΡΡƒΡ‰Π΅ΡΡ‚Π²Π΅Π½Π½ΡƒΡŽ долю Π² структурС Π²Ρ‹Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠΉ ΠΈ элСктричСской энСргии ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ Π΄Ρ€ΡƒΠ³ΠΈΠΌ Π’Π­Π . ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ основныС аспСкты энСргСтичСских ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌ ряда СвропСйских стран с наибольшСй Π΄ΠΎΠ»Π΅ΠΉ Π²Ρ‹Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠΉ ΠΈ элСктричСской энСргии Π½Π° ΠœΠ’Π’. ВыявлСно, Ρ‡Ρ‚ΠΎ наибольший интСрСс для БСларуси прСдставляСт энСргСтичСская ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ° Ѐинляндии, Π³Π΄Π΅ доля Π°Ρ‚ΠΎΠΌΠ½ΠΎΠΉ энСргии Π² структурС Π²Ρ‹Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ элСктричСской энСргии Ρ‚Π°ΠΊ ΠΆΠ΅, ΠΊΠ°ΠΊ ΠΈ Π² РСспубликС Π‘Π΅Π»Π°Ρ€ΡƒΡΡŒ, приблиТаСтся ΠΊ 40 % ΠΈ энСргСтичСская стратСгия ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅Ρ‚ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ Π΄ΠΎΠ»ΠΈ Π’Π­Π¦ Π½Π° ΠœΠ’Π’ Π² структурС Π²Ρ‹Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠΉ ΠΈ элСктричСской энСргии

    Entanglement production with multimode Bose-Einstein condensates in optical lattices

    Full text link
    Deep optical lattices are considered, in each site of which there are many Bose-condensed atoms. By the resonant modulation of trapping potentials it is possible to transfer a macroscopic portion of atoms to the collective nonlinear states corresponding to topological coherent modes. Entanglement can be generated between these modes. By varying the resonant modulating field it is possible to effectively regulate entanglement production in this multimode multitrap system of Bose condensates.Comment: Latex file, 16 pages, 7 figure
    • …
    corecore