6 research outputs found

    Identification and analysis of functional associations among natural eukaryotic genome editing components

    No full text
    During development in the ciliate Paramecium, excess DNA interspersed throughout the germline genome is deleted to generate a new somatic genome. In this process, most of the intervening DNA is excised by a Piggybac-derived transposase, assisted by small RNAs (scnRNAs and iesRNAs) and chromatin remodelling. As the list of genes involved in DNA elimination has been growing, a need for a general approach to discover functional relationships among these genes now exists. We show that deep sequencing-based comparisons of experimentally-induced DNA retention provide a sensitive, quantitative approach to identify and analyze functional associations among genes involved in native genome editing. This reveals two functional molecular groups: (i) iesRNAs/scnRNAs, the putative Piwi- and RNA-binding Nowa1/2 proteins, and the transcription elongation factor TFIIS4; and (ii) PtCAF1 and Ezl1, two proteins involved in chromatin remodelling. Comparative analyses of silencing effects upon the largely unstudied regions comprising most developmentally eliminated DNA in Paramecium suggests a continuum between precise and imprecise DNA elimination. These findings show there is now a way forward to systematically elucidate the main components of natural eukaryotic genome editing systems

    The Integrated RNA Landscape of Renal Preconditioning against Ischemia-Reperfusion Injury

    No full text
    Background Although AKI lacks effective therapeutic approaches, preventive strategies using preconditioning protocols, including caloric restriction and hypoxic preconditioning, have been shown to prevent injury in animal models. A better understanding of the molecular mechanisms that underlie the enhanced resistance to AKI conferred by such approaches is needed to facilitate clinical use. We hypothesized that these preconditioning strategies use similar pathways to augment cellular stress resistance. Methods To identify genes and pathways shared by caloric restriction and hypoxic preconditioning, we used RNA-sequencing transcriptome profiling to compare the transcriptional response with both modes of preconditioning in mice before and after renal ischemia-reperfusion injury. Results The gene expression signatures induced by both preconditioning strategies involve distinct common genes and pathways that overlap significantly with the transcriptional changes observed after ischemia-reperfusion injury. These changes primarily affect oxidation-reduction processes and have a major effect on mitochondrial processes. We found that 16 of the genes differentially regulated by both modes of preconditioning were strongly correlated with clinical outcome; most of these genes had not previously been directly linked to AKI. Conclusions This comparative analysis of the gene expression signatures in preconditioning strategies shows overlapping patterns in caloric restriction and hypoxic preconditioning, pointing toward common molecular mechanisms. Our analysis identified a limited set of target genes not previously known to be associated with AKI; further study of their potential to provide the basis for novel preventive strategies is warranted. To allow for optimal interactive usability of the data by the kidney research community, we provide an online interface for user-defined interrogation of the gene expression datasets (http://shiny.cecad.uni-koeln.de:3838/IRaP/)

    In vitro or not in vitro: a short journey through a long history

    No full text
    corecore