213 research outputs found

    Sterile Neutrino Fits to Short Baseline Neutrino Oscillation Measurements

    Get PDF
    This paper reviews short baseline oscillation experiments as interpreted within the context of one, two, and three sterile neutrino models associated with additional neutrino mass states in the ~1 eV range. Appearance and disappearance signals and limits are considered. We show that fitting short baseline data sets to a (3+3) model, defined by three active and three sterile neutrinos, results in an overall goodness of fit of 67%, and a compatibility of 90% among all data sets -- to be compared to the compatibility of 0.043% and 13% for a (3+1) and a (3+2) model, respectively. While the (3+3) fit yields the highest quality overall, it still finds inconsistencies with the MiniBooNE appearance data sets; in particular, the global fit fails to account for the observed MiniBooNE low-energy excess. Given the overall improvement, we recommend using the results of (3+2) and (3+3) fits, rather than (3+1) fits, for future neutrino oscillation phenomenology. These results motivate the pursuit of further short baseline experiments, such as those reviewed in this paper.Comment: Submitted to Advances in High Energy Physics Special Issue on Neutrino Physic

    A Measurement of the Absorption of Liquid Argon Scintillation Light by Dissolved Nitrogen at the Part-Per-Million Level

    Get PDF
    We report on a measurement of the absorption length of scintillation light in liquid argon due to dissolved nitrogen at the part-per-million (ppm) level. We inject controlled quantities of nitrogen into a high purity volume of liquid argon and monitor the light yield from an alpha source. The source is placed at different distances from a cryogenic photomultiplier tube assembly. By comparing the light yield from each position we extract the absorption cross section of nitrogen. We find that nitrogen absorbs argon scintillation light with strength of (1.51±0.15)×104  cm1ppm1(1.51\pm 0.15)\times10^{-4} \;\mathrm{cm^{-1} ppm^{-1}}, corresponding to an absorption cross section of (7.14±0.74)×1021  cm2molecule1(7.14 \pm 0.74)\times10^{-21}\;\mathrm{cm^{2} molecule^{-1}}. We obtain the relationship between absorption length and nitrogen concentration over the 0 to 50 ppm range and discuss the implications for the design and data analysis of future large liquid argon time projection chamber (LArTPC) detectors. Our results indicate that for a current-generation LArTPC, where a concentration of 2 parts per million of nitrogen is expected, the attenuation length due to nitrogen will be 30±330 \pm 3 meters.Comment: v2: Correct mistake in molecular absorption cross section calculation, and a minor typo in fig

    Measuring Active-to-Sterile Neutrino Oscillations with Neutral Current Coherent Neutrino-Nucleus Scattering

    Full text link
    Light sterile neutrinos have been introduced as an explanation for a number of oscillation signals at Δm21\Delta m^2 \sim 1 eV2^2. Neutrino oscillations at relatively short baselines provide a probe of these possible new states. This paper describes an accelerator-based experiment using neutral current coherent neutrino-nucleus scattering to strictly search for active-to-sterile neutrino oscillations. This experiment could, thus, definitively establish the existence of sterile neutrinos and provide constraints on their mixing parameters. A cyclotron-based proton beam can be directed to multiple targets, producing a low energy pion and muon decay-at-rest neutrino source with variable distance to a single detector. Two types of detectors are considered: a germanium-based detector inspired by the CDMS design and a liquid argon detector inspired by the proposed CLEAR experiment.Comment: 10 pages, 7 figure

    Environmental Effects on TPB Wavelength-Shifting Coatings

    Get PDF
    The scintillation detection systems of liquid argon time projection chambers (LArTPCs) require wavelength shifters to detect the 128 nm scintillation light produced in liquid argon. Tetraphenyl butadiene (TPB) is a fluorescent material that can shift this light to a wavelength of 425 nm, lending itself well to use in these detectors. We can coat the glass of photomultiplier tubes (PMTs) with TPB or place TPB-coated plates in front of the PMTs. In this paper, we investigate the degradation of a chemical TPB coating in a laboratory or factory environment to assess the viability of long-term TPB film storage prior to its initial installation in an LArTPC. We present evidence for severe degradation due to common fluorescent lights and ambient sunlight in laboratories, with potential losses at the 40% level in the first day and eventual losses at the 80% level after a month of exposure. We determine the degradation is due to wavelengths in the UV spectrum, and we demonstrate mitigating methods for retrofitting lab and factory environments

    Renaissance of the ~1 TeV Fixed-Target Program

    Get PDF
    This document describes the physics potential of a new fixed-target program based on a ~1 TeV proton source. Two proton sources are potentially available in the future: the existing Tevatron at Fermilab, which can provide 800 GeV protons for fixed-target physics, and a possible upgrade to the SPS at CERN, called SPS+, which would produce 1 TeV protons on target. In this paper we use an example Tevatron fixed-target program to illustrate the high discovery potential possible in the charm and neutrino sectors. We highlight examples which are either unique to the program or difficult to accomplish at other venues.Comment: 31 pages, 11 figure
    corecore