3,412 research outputs found

    Superradiance-like Electron Transport through a Quantum Dot

    Full text link
    We theoretically show that intriguing features of coherent many-body physics can be observed in electron transport through a quantum dot (QD). We first derive a master equation based framework for electron transport in the Coulomb-blockade regime which includes hyperfine (HF) interaction with the nuclear spin ensemble in the QD. This general tool is then used to study the leakage current through a single QD in a transport setting. We find that, for an initially polarized nuclear system, the proposed setup leads to a strong current peak, in close analogy with superradiant emission of photons from atomic ensembles. This effect could be observed with realistic experimental parameters and would provide clear evidence of coherent HF dynamics of nuclear spin ensembles in QDs.Comment: 21 pages, 10 figure

    Steady-state negative Wigner functions of nonlinear nanomechanical oscillators

    Full text link
    We propose a scheme to prepare nanomechanical oscillators in nonclassical steady states, characterized by a pronounced negative Wigner function. In our optomechanical approach, the mechanical oscillator couples to multiple laser driven resonances of an optical cavity. By lowering the resonance frequency of the oscillator via an inhomogeneous electrostatic field, we significantly enhance its intrinsic geometric nonlinearity per phonon. This causes the motional sidebands to split into separate spectral lines for each phonon number and transitions between individual phonon Fock states can be selectively addressed. We show that this enables the preparation of the nanomechanical oscillator in a single phonon Fock state. Our scheme can for example be implemented with a carbon nanotube dispersively coupled to the evanescent field of a state of the art whispering gallery mode microcavity

    Nuclear Spin Dynamics in Double Quantum Dots: Multi-Stability, Dynamical Polarization, Criticality and Entanglement

    Full text link
    We theoretically study the nuclear spin dynamics driven by electron transport and hyperfine interaction in an electrically-defined double quantum dot (DQD) in the Pauli-blockade regime. We derive a master-equation-based framework and show that the coupled electron-nuclear system displays an instability towards the buildup of large nuclear spin polarization gradients in the two quantum dots. In the presence of such inhomogeneous magnetic fields, a quantum interference effect in the collective hyperfine coupling results in sizable nuclear spin entanglement between the two quantum dots in the steady state of the evolution. We investigate this effect using analytical and numerical techniques, and demonstrate its robustness under various types of imperfections.Comment: 35 pages, 19 figures. This article provides the full analysis of a scheme proposed in Phys. Rev. Lett. 111, 246802 (2013). v2: version as publishe

    Solid-state magnetic traps and lattices

    Full text link
    We propose and analyze magnetic traps and lattices for electrons in semiconductors. We provide a general theoretical framework and show that thermally stable traps can be generated by magnetically driving the particle's internal spin transition, akin to optical dipole traps for ultra-cold atoms. Next we discuss in detail periodic arrays of magnetic traps, i.e. magnetic lattices, as a platform for quantum simulation of exotic Hubbard models, with lattice parameters that can be tuned in real time. Our scheme can be readily implemented in state-of-the-art experiments, as we particularize for two specific setups, one based on a superconducting circuit and another one based on surface acoustic waves.Comment: 18 pages, 8 figure

    Multi-locus barcoding confirms the occurrence of Elegant Tern in Western Europe

    Get PDF
    We are very grateful to the following people who helped in various ways with sample collection: JĂ©rome Fuchs and Eric Pasquet (National Museum of Natural History, Paris), Sharon M. Birks (Burke Museum of Naturel History of Seattle), Charlotte Francesiaz, Benjamin Vollot and Gilles Balança (Sandwich Tern, France), Charles Collins (Elegant Tern, USA), Arnaud Lenoble (Royal Tern, Guadeloupe), Lorien Pichegru (Crested Tern, South Africa), Abdulmaula Hamza (Lesser Crested Tern, Libya) and Clive Barlow (The Gambia). Marcio Efe and Eli Bridge helped with genotyping and shared unpublished sequences. We thank Juan Antonio GĂłmez for advice and Miguel ChardĂ­ and Francisco Javier GarcĂ­a-Gans for field assistance in Valencia (Spain). Mathias Grandpierre (SociĂ©tĂ© pour l’Etude et l’AmĂ©nagement de la Nature dans le Sud-Ouest) helped with fieldwork at the Banc d’Arguin (France). All the experiments comply with the current laws of the country in which they were performed.Peer reviewedPostprin
    • 

    corecore