3 research outputs found

    Teratogenicity of zinc deficiency in the rat: study of the fetal skeleton

    Get PDF
    Zinc deficiency (ZD) is teratogenic in rats, and fetal skeletal defects are prominent. This study identifies fetal skeletal malformations that affect calcified and non-calcified bone tissue as a result of gestational zinc deficiency in rats, and it assesses the effect of maternal ZD in fetal bone calcification. Pregnant Sprague-Dawley rats (180-250 g) were fed 1) a control diet (76.4 micrograms Zn/g diet) ad libitum (group C), 2) a zinc-deficient diet (0 microgram/g) ad libitum (group ZD), or 3) the control diet pair-fed to the ZD rats (group PF). On day 21 of gestation, laparotomies were performed. Fetuses were weighed, examined for external malformations, and stained in toto with a double-staining technique for the study of skeletal malformations. Maternal and fetal tissues were used for Zn, Mg, Ca, and P determinations. Gross external malformations were present in 97% of the ZD fetuses. No external malformations were found in fetuses from groups C and PF. Ninety-one percent of cleared ZD fetuses had multiple skeletal malformations, whereas only 3% of the fetuses of group PF had skeletal defects; no skeletal malformations were found in fetuses from group C. Some of the skeletal malformations described in the ZD fetuses, mainly affecting non-calcified bone, were not mentioned in previous reports, thus stressing the importance of using double-staining techniques. Examination of stained fetuses and counting of ossification centers revealed important calcification defects in ZD fetuses. These effects were confirmed by lower Ca and P concentrations in fetal bone with alteration of the Ca:P ratio

    Ex vivo culture of intact human patient derived pancreatic tumour tissue

    Get PDF
    The poor prognosis of pancreatic ductal adenocarcinoma (PDAC) is attributed to the highly fibrotic stroma and complex multi-cellular microenvironment that is difficult to fully recapitulate in pre-clinical models. To fast-track translation of therapies and to inform personalised medicine, we aimed to develop a whole-tissue ex vivo explant model that maintains viability, 3D multicellular architecture, and microenvironmental cues of human pancreatic tumours. Patient-derived surgically-resected PDAC tissue was cut into 1-2 mm explants and cultured on gelatin sponges for 12 days. Immunohistochemistry revealed that human PDAC explants were viable for 12 days and maintained their original tumour, stromal and extracellular matrix architecture. As proof-of-principle, human PDAC explants were treated with Abraxane and we observed different levels of response between patients. PDAC explants were also transfected with polymeric nanoparticles + Cy5-siRNA and we observed abundant cytoplasmic distribution of Cy5-siRNA throughout the PDAC explants. Overall, our novel model retains the 3D architecture of human PDAC and has advantages over standard organoids: presence of functional multi-cellular stroma and fibrosis, and no tissue manipulation, digestion, or artificial propagation of organoids. This provides unprecedented opportunity to study PDAC biology including tumour-stromal interactions and rapidly assess therapeutic response to drive personalised treatment.John Kokkinos, George Sharbeen, Koroush S. Haghighi, Rosa Mistica C. Ignacio, Chantal Kopecky, Estrella Gonzales-Aloy ... et al

    Teratogenicity of zinc deficiency in the rat: study of the fetal skeleton

    No full text
    Zinc deficiency (ZD) is teratogenic in rats, and fetal skeletal defects are prominent. This study identifies fetal skeletal malformations that affect calcified and non-calcified bone tissue as a result of gestational zinc deficiency in rats, and it assesses the effect of maternal ZD in fetal bone calcification. Pregnant Sprague-Dawley rats (180-250 g) were fed 1) a control diet (76.4 micrograms Zn/g diet) ad libitum (group C), 2) a zinc-deficient diet (0 microgram/g) ad libitum (group ZD), or 3) the control diet pair-fed to the ZD rats (group PF). On day 21 of gestation, laparotomies were performed. Fetuses were weighed, examined for external malformations, and stained in toto with a double-staining technique for the study of skeletal malformations. Maternal and fetal tissues were used for Zn, Mg, Ca, and P determinations. Gross external malformations were present in 97% of the ZD fetuses. No external malformations were found in fetuses from groups C and PF. Ninety-one percent of cleared ZD fetuses had multiple skeletal malformations, whereas only 3% of the fetuses of group PF had skeletal defects; no skeletal malformations were found in fetuses from group C. Some of the skeletal malformations described in the ZD fetuses, mainly affecting non-calcified bone, were not mentioned in previous reports, thus stressing the importance of using double-staining techniques. Examination of stained fetuses and counting of ossification centers revealed important calcification defects in ZD fetuses. These effects were confirmed by lower Ca and P concentrations in fetal bone with alteration of the Ca:P ratio
    corecore