2 research outputs found

    Anisotropy of the paramagnetic susceptibility in LaTiO3_{3}: The electron-distribution picture in the ground state

    Full text link
    The energy-level scheme and wave functions of the titanium ions in LaTiO3_{3} are calculated using crystal-field theory and spin-orbit coupling. The theoretically derived temperature dependence and anisotropy of the magnetic susceptibility agree well with experimental data obtained in an untwinned single crystal. The refined fitting procedure reveals an almost isotropic molecular field and a temperature dependence of the van Vleck susceptibility. The charge distribution of the 3d--electron on the Ti positions and the principle values of the quadrupole moments are derived and agree with NMR data and recent measurements of orbital momentum and crystal-field splitting. The low value of the ordered moment in the antiferromagnetic phase is discussed.Comment: 6 pages, 2 figures, 3 table

    Optical evidence for symmetry changes above the Neel temperature in KCuF3

    Full text link
    We report on optical measurements of the 1D Heisenberg antiferromagnet KCuF3. The crystal-field excitations of the Cu2+ ions have been observed and their temperature dependence can be understood in terms of magnetic and exchange-induced dipole mechanisms and vibronic interactions. Above T_N we observe a new temperature scale T_S characterized by the emergence of narrow absorption features that correlate with changes of the orbital ordering as observed by Paolasini et al. [Phys. Rev. Lett. 88, 106403 (2002)]. The appearance of these optical transitions provides evidence for a symmetry change above the Neel temperature that affects the orbital ordering and paves the way for the antiferromagnetic ordering.Comment: 4 pages, 2 figure
    corecore