2 research outputs found
Anisotropy of the paramagnetic susceptibility in LaTiO: The electron-distribution picture in the ground state
The energy-level scheme and wave functions of the titanium ions in
LaTiO are calculated using crystal-field theory and spin-orbit coupling.
The theoretically derived temperature dependence and anisotropy of the magnetic
susceptibility agree well with experimental data obtained in an untwinned
single crystal. The refined fitting procedure reveals an almost isotropic
molecular field and a temperature dependence of the van Vleck susceptibility.
The charge distribution of the 3d--electron on the Ti positions and the
principle values of the quadrupole moments are derived and agree with NMR data
and recent measurements of orbital momentum and crystal-field splitting.
The low value of the ordered moment in the antiferromagnetic phase is
discussed.Comment: 6 pages, 2 figures, 3 table
Optical evidence for symmetry changes above the Neel temperature in KCuF3
We report on optical measurements of the 1D Heisenberg antiferromagnet KCuF3.
The crystal-field excitations of the Cu2+ ions have been observed and their
temperature dependence can be understood in terms of magnetic and
exchange-induced dipole mechanisms and vibronic interactions. Above T_N we
observe a new temperature scale T_S characterized by the emergence of narrow
absorption features that correlate with changes of the orbital ordering as
observed by Paolasini et al. [Phys. Rev. Lett. 88, 106403 (2002)]. The
appearance of these optical transitions provides evidence for a symmetry change
above the Neel temperature that affects the orbital ordering and paves the way
for the antiferromagnetic ordering.Comment: 4 pages, 2 figure