4 research outputs found

    Angles-Only EKF Navigation for Hyperbolic Flybys

    Get PDF
    Space travelers in science fiction can drop out of hyperspace and make a pinpoint landing on any strange new world without stopping to get their bearings, but real-life space navigation is an art characterized by limited information and complex mathematics that yield no easy answers. This study investigates, for the first time ever, what position and velocity estimation errors can be expected by a starship arriving at a distant star - specifically, a miniature probe like those proposed by the Breakthrough Starshot initiative arriving at Proxima Centauri. Such a probe consists of nothing but a small optical camera and a small microprocessor, and must therefore rely on relatively simple methods to determine its position and velocity, such as observing the angles between its destination and certain guide stars and processing them in an algorithm known as an extended Kalman filter. However, this algorithm is designed for scenarios in which the position and velocity are already known to high accuracy. This study shows that the extended Kalman filter can reliably estimate the position and velocity of the Starshot probe at speeds characteristic of current space probes, but does not attempt to model the filter’s performance at speeds characteristic of Starshot-style proposals. The gravity of the target star is also estimated using the same methods

    Development of Optimal Bubble-Seeding Microheaters to Study Nucleate Boiling Heat Transfer in Microgravity

    Get PDF
    Heat management is a critical issue facing engineers of spaceflight systems. Nucleate boiling has high heat transfer rates, but further study is needed to apply this method effectively to a heat transfer system in a microgravity environment. The USU Get Away Special (GAS) team is conducting a series of experiments aboard NASA\u27s Weightless Wonder aircraft to further understanding of nucleate boiling activity in microgravity. Two specific focuses of the current experiment are determining optimal surface geometries of microheater arrays designed to induce nucleate boiling and constructing a lighting and video system to spatially and temporally resolve the anticipated jets of fine, high-speed bubbles. As we use these systems to collect and connect data, we expect to gain an increased understanding of the conditions, parameters, and applications of nucleate boiling in microgravity
    corecore