7 research outputs found

    Development and evaluation of a rapid and simple diagnostic assay for COVID-19 based on loop-mediated isothermal amplification

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly pathogenic novel coronavirus that has caused a worldwide outbreak.Here we describe a reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay that uses a portable device for efficient detection of SARS-CoV-2. This RT-LAMP assay specifically detected SARS-CoV-2 without cross-reacting with the most closely related human coronavirus, SARS-CoV. Clinical evaluation of nasal swab samples from suspected SARS-CoV-2 pneumonia (COVID-19) patients showed that the assay could detect over 23.7 copies within 15 min with a 100% probability. Since the RT-LAMP assay can be performed with a portable battery-supported device, it is a rapid, simple, and sensitive diagnostic assay for COVID-19 that can be available at point-of-care. We also developed the RT-LAMP assay without the RNA extraction step-Direct RT-LAMP, which could detect more than 1.43 x 103 copies within 15 min with a 100% probability in clinical evaluation test. Although the Direct RT-LAMP assay was less sensitive than the standard RT-LAMP, the Direct RT-LAMP assay can be available as the rapid first screening of COVID-19 in poorly equipped areas, such as rural areas in developing countries

    First evidence for continuous circulation of hepatitis A virus subgenotype IIA in Central Africa

    No full text
    Although a high seroprevalence of antibodies against hepatitis A virus (HAV) has been estimated in Central Africa, the current status of both HAV infections and seroprevalence of anti-HAV antibodies remains unclear due to a paucity of surveillance data available. We conducted a serological survey during 2015-2017 in Gabon, Central Africa, and confirmed a high seroprevalence of anti-HAV antibodies in all age groups. To identify the currently circulating HAV strains and to reveal the epidemiological and genetic characteristics of the virus, we conducted molecular surveillance in a total of 1,007 patients presenting febrile illness. Through HAV detection and sequencing, we identified subgenotype IIA (HAV-IIA) infections in the country throughout the year. A significant prevalence trend emerged in the young child population, presenting several infection peaks which appeared to be unrelated to dry or rainy seasons. Whole-genome sequencing and phylogenetic analyses revealed local HAV-IIA evolutionary events in Central Africa, indicating the circulation of HAV-IIA strains of a region-specific lineage. Recombination analysis of complete genome sequences revealed potential recombination events in Gabonese HAV strains. Interestingly, Gabonese HAV-IIA possibly acquired the 5'-untranslated region (5'-UTR) of the rare subgenotype HAV-IIB in recent years, suggesting the present existence of HAV-IIB in Central Africa. These findings indicate a currently stable HAV-IIA circulation in Gabon, with a high risk of infections in children aged under 5 years. Our findings will enhance the understanding of the current status of HAV infections in Central Africa, and provide new insight into the molecular epidemiology and evolution of HAV genotype II

    Re-emergence of dengue virus serotype 3 infections in Gabon in 2016–2017, and evidence for the risk of repeated dengue virus infections

    Get PDF
    Objectives: Dengue outbreaks, mainly caused by dengue virus serotype 2 (DENV-2), occurred in 2007 and in 2010 in Gabon, Central Africa. However, information on DENV infections has been insufficient since 2010. The aim of this study was to investigate the current DENV infection scenario and the risk of repeated infections in Gabon. Methods: During 2015–2017, serum samples were collected from enrolled febrile participants and were tested for DENV infection using RT-qPCR. DENV-positive samples were analyzed for a history of previous DENV infection(s) using ELISA. The complete DENV genome was sequenced to analyze the phylogeny of Gabonese DENV strains. Results: DENV-3 was exclusively detected, with a high rate of anti-DENV IgG seropositivity among DENV-3-positive participants. DENV-3 showed higher infection rates in adults and the infection was seasonal with peaks in the rainy seasons. Phylogenetic analysis revealed that Gabonese DENV-3 originated from West African strains and has been circulating continuously in Gabon since at least 2010, when the first DENV-3 case was reported. Conclusions: These findings indicate stable DENV-3 circulation and the risk of repeated DENV infections in Gabon, highlighting the need for continuous monitoring to control DENV infections
    corecore